+高级检索
CMAS对热障涂层界面裂纹和残余应力的影响
作者:
作者单位:

西北工业大学力学与土木建筑学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Effect of CMAS on Interfacial Crack and Residual Stress of Thermal Barrier Coatings
Author:
Affiliation:

1.School of Mechanics,Civil Engineering and Architecture,Northwestern Polytechnical University,Xi’an 710129;2.P.R. China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着航空发动机涡轮叶片工作温度的提升,使得一种主要由CaO,MgO,Al2O3和SiO2组成的玻璃态物质(CMAS)对热障涂层的危害越来越严重,从而对热障涂层的性能和耐久性有了更高的要求。本文以电子束物理气相沉积热障涂层为研究对象,利用有限元方法研究了CMAS的渗入对界面裂纹扩展及CMAS对陶瓷层(TC)内部残余应力的影响规律。采用波长固定、振幅变化的正弦曲线表示不同粗糙度的涂层界面,同时考虑了CMAS的弹性模量变化的影响及不同界面形貌与CMAS之间的相互作用。结果表明:CMAS弹性模量的增加对界面裂纹具有抑制作用,并且TGO幅值和厚度越小,抑制作用越明显。CMAS弹性模量对TC层最大残余应力S22的影响存在临界点,在临界点之前,CMAS弹性模量的变化对TC层最大残余应力的影响较大,随着CMAS弹性模量的增加,TC层最大残余应力大幅度减小;在临界点之后,TC层最大残余应力基本不受CMAS弹性模量变化的影响。这些结果对电子束物理气相沉积喷涂的热障涂层失效机理的研究具有重要意义,可以为热障涂层界面的优化提供指导。

    Abstract:

    With the increase of operating temperature in aero-engine turbine blades, a vitreousSmaterial (CMAS) consisting mainly of CaO, MgO, Al2O3 and SiO2 were increasingly harmful to the thermal barrier coatings deposited on the blade. Therefore, the performance and durability of thermal barrier coatings should meet higher requirements. In this study, the influence of CMAS penetration on interfacial crack propagation and residual stress in the electron beam physical vapor deposition thermal barrier coatings was investigated by using finite element method. The sinusoidal curves with fixed wavelength and varying amplitude were used to model the interfaces with different roughness. At the same time, the effect of the elastic modulus of CMAS and the interaction between interface morphology and CMAS were taken into account. The results show that the increase of CMAS elastic modulus has an inhibitory effect on interfacial cracks, and the smaller the TGO amplitude and thickness, the more obvious the inhibition. There is a critical point for the effect of CMAS elastic modulus on the maximum residual stress S22 in top coat (TC) layer. Before the critical point, the change of CMAS elastic modulus has a greater influence on the maximum residual stress of TC layer, and with the increase of elastic modulus of CMAS, the maximum residual stress of TC layer decreases greatly; after the critical point, the maximum residual stress of TC layer is hardly affected by the change of elastic modulus of CMAS. These results are of great significance for the study of the failure mechanism of thermal barrier coatings by electron beam physical vapor deposition, it can provide guidance for the optimization of the interface of thermal barrier coatings.

    参考文献
    1 Padture, N.P., G. Maurice, and E.H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science, 2002. 296(5566): p. 280-284.
    2 Vitor Emanuel, d.M.L.d.S.P., J.R. Nicholls, and R. Newton, Modelling the EB-PVD thermal barrier coating process: Component clusters and shadow masks. Surface and Coatings Technology, 2017. 311: p. 307-313.
    3 Borom, M.P., C.A. Johnson, and L.A. Peluso, Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface Coatings Technology, 1996. s 86–87(96): p. 116-126.
    4 Aygun, A., A.L. Vasiliev, N.P. Padture, and X. Ma, Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Materialia, 2007. 55(20): p. 6734-6745.
    5 Li, L. and D.R. Clarke, Effect of CMAS Infiltration on Radiative Transport Through an EB-PVD Thermal Barrier Coating. International Journal of Applied Ceramic Technology, 2010. 5(3): p. 278-288.
    6 Peng, H., L. Wang, L. Guo, W. Miao, H. Guo, and S. Gong, Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International, 2012. 22(5): p. 461-467.
    7 Jing, W., H.b. Guo, Y.z. Gao, and S.k. Gong, Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 2011. 31(10): p. 1881-1888.
    8 Kr?mer, S., J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits. Journal of the American Ceramic Society, 2006. 89: p. 3167-3175.
    9 Mercer, C., S. Faulhaber, A.G. Evans, and R. Darolia, A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta Materialia, 2005. 53(4): p. 1029-1039.
    10 Su, L., X. Chen, and T.J. Wang, Numerical analysis of CMAS penetration induced interfacial delamination of transversely isotropic ceramic coat in thermal barrier coating system. Surface and Coatings Technology, 2015. 280: p. 100-109.
    11 Su, L. and C. Yi, Effects of CMAS penetration on the delamination cracks in EB-PVD thermal barrier coatings with curved interface. Ceramics International, 2017. 43(12): p. 8893-8897.
    12 Li, B., X. Fan, K. Zhou, and T.J. Wang, Effect of oxide growth on the stress development in double-ceramic-layer thermal barrier coatings. Ceramics International, 2017. 43(17): p. 14763-14774.
    13 Fan, X.L., W.X. Zhang, T.J. Wang, and Q. Sun, The effect of thermally grown oxide on multiple surface cracking in air plasma sprayed thermal barrier coating system. Surface and Coatings Technology, 2012. 208: p. 7-13.
    14 Zhu, W., M. Cai, L. Yang, J. Guo, Y. Zhou, and C. Lu, The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings. Surface Coatings Technology, 2015. 276: p. 160-167.
    15 Li, B., X. Fan, K. Zhou, and T. Wang, A semi-analytical model for predicting stress evolution in multilayer coating systems during thermal cycling. International Journal of Mechanical Sciences, 2018. 135: p. 31-42.
    16 Li, S., H. Qi, J. Song, X. Yang, and C. Che, Effect of bond-coat surface roughness on failure mechanism and lifetime of air plasma spraying thermal barrier coatings. Science China Technological Sciences, 2019. 62(6): p. 989-995.
    17 Yu, Q.M., Q. He, and F.L. Ning, Influence of interface morphology on erosion failure of thermal barrier coatings. Ceramics International, 2018. 44(17): p. 21349-21357.
    18 Zhu, W., Y.J. Jin, L. Yang, Z.P. Pi, and Y.C. Zhou, Fracture mechanism maps for thermal barrier coatings subjected to single foreign object impact. Wear, 2018. 414-415: p. 303-309.
    19 Wellman, R., G. Whitman, and J.R. Nicholls, CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage. International Journal of Refractory Metals Hard Materials, 2010. 28(1): p. 124-132.
    20 Vidal-Setif, M.H., N. Chellah, C. Rio, C. Sanchez, and O. Lavigne, Calcium–magnesium–alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings: Characterization of CMAS damage on ex-service high pressure blade TBCs. Surface Coatings Technology, 2012. 208(3): p. 39-45.
    21 Zhang, G., X. Fan, R. Xu, L. Su, and T.J. Wang, Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system. Ceramics International, 2018: p. S0272884218309362.
    22 Hui, M., Q. Yu, and Y. Shi, Influence of material parameters on the interfacial crack growth in thermal barrier coating system. Ceramics International, 2019. 45(7, Part A): p. 8414-8427.
    23 Yu, Q.M. and Q. He, Effect of material properties on residual stress distribution in thermal barrier coatings. Ceramics International, 2018. 44(3): p. 3371-3380.
    24 Lv, B., X. Fan, D. Li, and T.J. Wang, Towards enhanced sintering resistance: Air-plasma-sprayed thermal barrier coating system with porosity gradient. Journal of the European Ceramic Society, 2018. 38(4): p. 1946-1956.
    25 ABAQUS, Version 6.11 Documentation. Dassault SystemesSimulia Corp,Providence, RI, USA., 2011.
    26 Zhou, Y.C. and T. Hashida, Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system. International Journal of Solids and Structures, 2001. 38(24): p. 4235-4264.
    27 Dongbo, Z., C. Jian, Z. Jianjun, and G. Dan. Simulation on Thermal Barrier Coatings Failure by CMAS. Rare Metal Materials and Engineering. 2012.
    28 Yu, Q.M., H.L. Zhou, and L.B. Wang, Influences of interface morphology and thermally grown oxide thickness on residual stress distribution in thermal barrier coating system. Ceramics International, 2016. 42(7): p. 8338-8350.
    29 Dugdale, D.S., Yielding of steel sheets containing slits. Journal of the Mechanics Physics of Solids, 1960. 8(2): p. 100-104.
    30 Barenblatt, G.I., The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, 1962. 7: p. 55-129.
    31 Jiang, J., W. Wang, X. Zhao, Y. Liu, Z. Cao, and X. Ping, Numerical analyses of the residual stress and top coat cracking behavior in thermal barrier coatings under cyclic thermal loading. Engineering Fracture Mechanics, 2018. 196: p. 191-205.
    32 Chandra, N., H. Li, C. Shet, and H. Ghonem, Some issues in the application of cohesive zone models for metal–ceramic interfaces. International Journal of Solids and Structures, 2002. 39(10): p. 2827-2855.
    33 Zhu, W., L. Yang, J.W. Guo, Y.C. Zhou, and C. Lu, Determination of interfacial adhesion energies of thermal barrier coatings by compression test combined with a cohesive zone finite element model. International Journal of Plasticity, 2015. 64: p. 76-87.
    34 Xu, W. and Y. Wei, Strength analysis of metallic bonded joints containing defects. Computational Materials Science, 2012. 53(1): p. 444-450.
    35 Camanho, P.P., C.G. Dávila, and M.D. Moura, Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. Journal of Composite Materials, 2003. 37(16): p. 1415-1438.
    36 Mi, Y., M.A. Crisfield, G.A.O. Davies, and H.B. Hellweg, Progressive Delamination Using Interface Elements. Delamination Behaviour of Composites, 1998. 32(14): p. 367-386.
    37 Cen, L., W.Y. Qin, and Q.M. Yu, Analysis of interface delamination in thermal barrier coating system with axisymmetric structure based on corresponding normal and tangential stresses. Surface and Coatings Technology, 2019. 358: p. 785-795.
    38 Bia?as, M., Finite element analysis of stress distribution in thermal barrier coatings. Surface and Coatings Technology, 2008. 202(24): p. 6002-6010.
    39 Xu, T., M.Y. He, and A.G. Evans, A Numerical Assessment of the Propagation and Coalescence of Delamination Cracks in Thermal Barrier Systems. Interface Science, 2003. 11(3): p. 349-358.
    40 Mao, W.G., J. Wan, C.Y. Dai, J. Ding, Y. Zhang, Y.C. Zhou, and C. Lu, Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique. Surface and Coatings Technology, 2012. 206(21): p. 4455-4461.
    41 Jiang, J., W. Wang, X. Zhao, Y. Liu, Z. Cao, and P. Xiao, Numerical analyses of the residual stress and top coat cracking behavior in thermal barrier coatings under cyclic thermal loading. Engineering Fracture Mechanics, 2018. 196: p. 191-205.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭盾,于庆民,岑吕. CMAS对热障涂层界面裂纹和残余应力的影响[J].稀有金属材料与工程,2020,49(9):2937~2947.[Dun Guo, Qingmin Yu, Lv Cen. Effect of CMAS on Interfacial Crack and Residual Stress of Thermal Barrier Coatings[J]. Rare Metal Materials and Engineering,2020,49(9):2937~2947.]
DOI:10.12442/j. issn.1002-185X.20190652

复制
文章指标
  • 点击次数:729
  • 下载次数: 1250
  • HTML阅读次数: 159
  • 引用次数: 0
历史
  • 收稿日期:2019-08-06
  • 最后修改日期:2020-08-20
  • 录用日期:2019-12-04
  • 在线发布日期: 2020-10-15