+高级检索
0.29V-0.09Ta RAFM钢辐照条件下空洞演化的实验和理论研究
作者:
作者单位:

清华大学材料学院先进材料教育部重点实验室

基金项目:

The National Natural Science Foundation of China (Grant 51771097), Tsinghua University Initiative Scientific Research Program, The National Key Research and Development Plan (Grant 2017YFB0305201), The Science Challenge Project (Grant TZ2018004).


Experimental and theoretical analysis of void evolution during irradiation in 0.29V-0.09Ta RAFM steel
Author:
Affiliation:

Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University

Fund Project:

The National Natural Science Foundation of China (Grant 51771097), Tsinghua University Initiative Scientific Research Program, The National Key Research and Development Plan (Grant 2017YFB0305201), The Science Challenge Project (Grant TZ2018004).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究辐照条件下空洞的演化,分别在200 °C, 350 °C和550 °C对低活化铁素体/马氏体钢(RAFM)进行He离子辐照。实验结果显示辐照损伤沿深度呈钟型分布,空洞的尺寸和密度均与空位产生率正相关。随着辐照温度升高,空洞的尺寸增大,密度降低,高温下可以观察到空洞在晶界的聚集和无空洞区(VDZs),在550 °C可以观察到方形空洞。使用相场模型模拟空洞的演化机制,模拟结果显示辐照条件下空洞演化可以分为孕育、形核和生长三个阶段,空洞界面能的各项异性是空洞形状的可能原因。

    Abstract:

    Helium ion irradiation at 200 °C, 350 °C and 550 °C was performed on a reduced activation ferritic/martensitic (RAFM) steel to investigate the evolution of voids during irradiation. Experimental results showed that radiation damage had a bell-shape distribution along the depth. Both void size and density increased as vacancy production rate increased. When irradiation temperature rose, void size increased and void density decreased. Faceted voids were observed at 550 °C. Voids aggregation at grain boundaries (GBs) and void denuded zones (VDZs) were observed at high temperatures. A phase field model was employed to investigate the void evolution mechanism. The simulation results showed that the void shape may be attributed anisotropic void interface energy. During irradiation, as time goes on, void evolution can be divided into three stages: incubation stage, nucleation stage and growth stage.

    参考文献
    1. Yvon P., Carré F. Journal of Nuclear Materials[J]. 2009, 385(2): 217-22.
    2. Zinkle Steven J., Busby Jeremy T. Materials Today[J]. 2009, 12(11): 12-9.
    3. Klueh R. L., Nelson A. T. Journal of Nuclear Materials[J]. 2007, 371(1-3): 37-52.
    4. Yvon Pascal, Le Flem Marion, Cabet Céline, et al. Nuclear Engineering and Design[J]. 2015, 294(161-9.
    5. Klueh R. L., Cheng E. T., Grossbeck M. L., et al. Journal of Nuclear Materials[J]. 2000, 280(3): 353-9.
    6. Klueh R. L., Alexander D. J., Rieth M. Journal of Nuclear Materials[J]. 1999, 273(2): 146-54.
    7. Chen Jianguo, Liu Chenxi, Liu Yongchang, et al. Journal of Nuclear Materials[J]. 2016, 479(295-301.
    8. Tan L., Yang Y., Busby J. T. Journal of Nuclear Materials[J]. 2013, 442(1-3): S13-S7.
    9. Shankar Vani, Mariappan K., Nagesha A., et al. Fusion Engineering and Design[J]. 2012, 87(4): 318-24.
    10. Shankar Vani, Mariappan K., Sandhya R., et al. Fusion Engineering and Design[J]. 2015, 100(314-20.
    11. Kim Byung Hwan, Jang Jae Hoon, Seol Woo-Kyung, et al. Journal of Nuclear Materials[J]. 2018, 508(595-8.
    12. Kim Han Kyu, Lee Ji Won, Moon Joonoh, et al. Journal of Nuclear Materials[J]. 2018, 500(327-36.
    13. Trinkaus H., Singh B. N. Journal of Nuclear Materials[J]. 2003, 323(2-3): 229-42.
    14. Yamamoto T., Odette G. R., Miao P., et al. Journal of Nuclear Materials[J]. 2009, 386-388(338-41.
    15. Wang Xu, Monterrosa Anthony M., Zhang Feifei, et al. Journal of Nuclear Materials[J]. 2015, 462(119-25.
    16. Fu Z. Y., Liu P. P., Wan F. R., et al. Fusion Engineering and Design[J]. 2015, 91(73-8.
    17. Gaganidze E., Petersen C., Aktaa J. Journal of Nuclear Materials[J]. 2009, 386-388(349-52.
    18. Klueh R. L., Hashimoto N., Sokolov M. A., et al. Journal of Nuclear Materials[J]. 2006, 357(1-3): 169-82.
    19. Henry J., Mathon M. H., Jung P. Journal of Nuclear Materials[J]. 2003, 318(249-59.
    20. Jiao Z., Ham N., Was G. S. Journal of Nuclear Materials[J]. 2007, 367-370(440-5.
    21. Hetherly J., Martinez E., Di Z. F., et al. Scripta Materialia[J]. 2012, 66(1): 17-20.
    22. Sekio Yoshihiro, Yamashita Shinichiro, Sakaguchi Norihito, et al. Journal of Nuclear Materials[J]. 2015, 458(355-60.
    23. Millett Paul C., El-Azab Anter, Rokkam Srujan, et al. Computational Materials Science[J]. 2011, 50(3): 949-59.
    24. Millett Paul C., El-Azab Anter, Wolf Dieter. Computational Materials Science[J]. 2011, 50(3): 960-70.
    25. Hu Shenyang, Burkes Douglas E., Lavender Curt A., et al. Journal of Nuclear Materials[J]. 2016, 479(202-15.
    26. Hu S. Y., Murray J., Weiland H., et al. Calphad[J]. 2007, 31(2): 303-12.
    27. Lin-Yun Liang, Guang-Hong Lü. Acta Phys Sin-Ch Ed[J]. 2013, 62(18):
    28. Liu W. B., Wang N., Ji Y. Z., et al. Journal of Nuclear Materials[J]. 2016, 479(316-22.
    29. Chen L. Q., Shen J. Comput Phys Commun[J]. 1998, 108(2-3): 147-58.
    30. Millett Paul C., Tonks Michael. Current Opinion in Solid State and Materials Science[J]. 2011, 15(3): 125-33.
    31. Rokkam Srujan, El-Azab Anter, Millett Paul, et al. Modelling and Simulation in Materials Science and Engineering[J]. 2009, 17(6): 064002.
    32. Marquis Emmanuelle A., Hu Rong, Rousseau Thomas. Journal of Nuclear Materials[J]. 2011, 413(1): 1-4.
    33. Hu Wenhui, Guo Liping, Chen Jihong, et al. Fusion Engineering and Design[J]. 2014, 89(4): 324-8.
    34. Was Gary S., Wharry Janelle P., Frisbie Brian, et al. Journal of Nuclear Materials[J]. 2011, 411(1-3): 41-50.
    35. Millett Paul C., Tonks Michael R., Biner S. B., et al. Journal of Nuclear Materials[J]. 2012, 425(1-3): 130-5.
    36. Liu W. B., Zhang J. H., Ji Y. Z., et al. Journal of Nuclear Materials[J]. 2018, 500(213-9.
    相似文献
    引证文献
引用本文

夏礼栋,霍晓杰,陈浩,杨志刚,张弛.0.29V-0.09Ta RAFM钢辐照条件下空洞演化的实验和理论研究[J].稀有金属材料与工程,2021,50(4):1139~1145.[Xia Lidong, Huo Xiaojie, Chen Hao, Yang Zhigang, Zhang Chi. Experimental and theoretical analysis of void evolution during irradiation in 0.29V-0.09Ta RAFM steel[J]. Rare Metal Materials and Engineering,2021,50(4):1139~1145.]
DOI:10.12442/j. issn.1002-185X.20200259

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-19
  • 最后修改日期:2020-05-07
  • 录用日期:2020-05-08
  • 在线发布日期: 2021-05-08