+高级检索
CO2 δ-Pu(100)表面吸附行为的第一性原理研究
作者:
作者单位:

1.火箭军工程大学 研究生院,陕西 西安 710025;2.火箭军工程大学 核工程学院,陕西 西安 710025


Study on Adsorption Behavior of CO2 on the δ-Pu(100) Sur-face Based on First-principles
Author:
Affiliation:

1.Graduate School, Xi'an Institute of High-Tech, Xi'an 710025; China;2.School of Nuclear Engineering, Xi'an Institute of High-Tech, Xi'an 710025; China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    结合密度泛函理论框架内的周期性平板模型,运用第一性原理计算方法研究了CO2δ-Pu(100)表面的吸附行为。结果表明,CO2分子以C端向下和C-Pu、O-Pu多键结合的方式吸附在δ-Pu(100)表面。吸附类型属于强化学吸附,最稳定的吸附构型是H1-C4O4,此时吸附能为-6.430 eV,吸附稳定性顺序为穴位>桥位>顶位。CO2分子主要和表面Pu原子反应,而与其它3层Pu原子的反应较弱。更多的电子向CO2 u轨道转移有利于C-O键的弯曲和活化。此外,CO2分子和Pu原子之间的化学键主要是离子态,反应机理是CO2的C 2s、C 2p、O 2s 和O 2p轨道与Pu 6p、Pu 6d、Pu 5f轨道发生了重叠杂化作用,产生了新的键结构。H1-C4O4构型的功函数变化最小,表明其它电子容易从该构型表面逃逸,且需要的能量最小。

    Abstract:

    A first-principles calculation was applied to study the adsorption behavior of CO2 on δ-Pu(100) surface using a slab model within the framework of density functional theory. Results demonstrate that CO2 molecules are adsorbed on δ-Pu(100) surface at C-terminated bent state by multi-bond binding of C-Pu and O-Pu. The adsorption type belongs to strong chemical adsorption and the most stable adsorption configuration is H1-C4O4 with the adsorption energy of -6.430 eV. The adsorption stability order is hollow site>bridge site>top site. CO2 molecule mainly interacts with Pu surface atoms, while the interaction with other three Pu atoms is weak. The transfer of more electrons to the CO2 u orbital is beneficial to the bending and activation of C-O bonds. Moreover, the chemical bonding between Pu atoms and CO2 molecule is mainly ionic state and the reaction mechanism is that the C 2s, C 2p, O 2s and O 2p orbitals of CO2 molecule hybrid with Pu 6p, Pu 6d and Pu 5f orbitals, resulting in a new bond structure. The work function of the H1-C4O4 site changes the least, indicating that other electrons readily escape from the metal surface and the required energy is the smallest.

    参考文献
    [1] Haschke J M, Hodges A E, Lucas R L. Journal of the Less Common Metals[J], 1987, 133(1): 155
    [2] Méot-Reymond S, Fournier J M. Journal of Alloys & Compounds[J], 1996, 232(1-2): 119
    [3] Almeida T, Cox L E, Ward J W et al. Surface Science Letters[J], 1993, 287(1): 141
    [4] Stakebake J L, Larson D T, Haschke J M. Journal of Alloys and Compounds[J], 1993, 202(1): 251
    [5] Oetting F L. Chemical Reviews[J], 1967, 67(3): 261
    [6] Haschke J M, Ricketts T E. Journal of Alloys & Compounds[J], 1997, 252(1-2): 148
    [7] Eriksson O, Hao Y G, Cooper B R et al. Physical Review B Condensed Matter[J], 1991, 43(6): 4590
    [8] Huda M N, Ray A K. Physica B Physics of Condensed Matter[J], 2005, 366(1-4): 95
    [9] Huda M N, Ray A K. The European Physical Journal B[J], 2004, 40(3): 337
    [10] Huda M N, Ray A K. The European Physical Journal B[J], 2005, 43(1): 131
    [11] Huda M N, Ray A K. Physica B-Condensed Matter[J], 2004, 352: 5
    [12] Li G, Lai X C, Sun Y. Acta Physico-Chimica Sinica[J], 2005, 21(6): 686 (in Chinese)
    [13] Atta-Fynn R, Ray A K. Physical Review B[J], 2007, 75(19): 5112
    [14] Atta-Fynn R, Ray A K. Physica B Physics of Condensed Matter[J], 2007, 400(1-2): 307
    [15] Meng Daqiao, Luo Wenhua, Li Gan et al. Acta Physica Sinica[J], 2009, 58(12): 8224 (in Chinese)
    [16] Luo Wenhua, Meng Daqiao, Li Gan et al. Acta Physica Sinica[J], 2008, 57(1): 160 (in Chinese)
    [17] Wang Jiangguang, Aosk K. Journal of Computational and Theoretical Nanoscience[J], 2014, 11: 1710
    [18] Atta-Fynn R, Ray A K. European Physical Journal b Condensed Matter & Complex Systems[J], 2009, 70(2): 171
    [19] Kresse G, Furthmüller J. Physica B Physics of Condensed Matter[J], 1996, 54(16): 111 69
    [20] Hohenberg P, Kohn W. Physical Review[J], 1964, 136: 864
    [21] Kohn W, Ham L J. Physical Review A[J], 1965, 140: 1133
    [22] Blochl P E. Physica B Physics of Condensed Matter[J], 1994, 50: 17 953
    [23] Kresse G, Joubert D. Physical Review B[J], 1999, 59(3): 1758
    [24] Huang G Y, Wang C Y, Wang J T. Journal of Physics-Condensed Matter[J], 2009, 21: 345 802
    [25] Dong W, Kresse G, Furthmüller J et al. Physica B Physics of Condensed Matter[J], 1996, 54(3): 2157
    [26] Perdew J P, Chevary J A, Vosko S H et al. Physical Review[J], 1992, 46: 6671
    [27] Perdew J P, Burke K, Ernzerhof M. Physical Review Letter[J], 1996, 77: 3865
    [28] Monkhorst H J, Pack J D. Physical Review B Condensed Matter[J], 1976, 13: 5188
    [29] Payne M C, Arias T A, Joannopoulos J D. Reviews of Modern Physics[J], 1992, 64(4): 1045
    [30] Ogren, Paul J. Journal of Chemical Education[J], 2002, 79(1): 117
    [31] Li Gan, Luo Wenhua, Chen Huchi. Acta Physico-Chimica Sinica[J], 2011, 27(10): 2319 (in Chinese)
    [32] Freund H J, Messmer R P. Surface Science[J], 1986, 172(1): 1
    [33] Li Gan, Sun Ying, Wang Xiaolin et al. Acta Physico-Chimica Sinica[J], 2003, 4: 356 (in Chinese)
    [34] Green D W, Reedy G T. Chemischer Informationsdienst[J], 1978, 69(2): 544
    [35] Haire R G. Journal of Alloys & Compounds[J], 1994, 213-214: 185
    [36] Henkelman G, Amaldsson A, Jonsson H. Computational Materials Science[J], 2006, 36: 354
    [37] Hao Y G, Eriksson O, Fernando G W et al. Physica B Physics of Condensed Matter[J], 1993, 47(11): 6680
    [38] Wei Hongyuan, Hu Rui, Xiong Xiaoling et al. Journal of Molecular Science[J], 2010, 26(1): 37 (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戚春保,王涛,王金涛,陶思昊,秦铭澳.CO2 δ-Pu(100)表面吸附行为的第一性原理研究[J].稀有金属材料与工程,2021,50(8):2728~2737.[Qi Chunbao, Wang Tao, Wang Jintao, Tao Sihao, Qin Ming'ao. Study on Adsorption Behavior of CO2 on the δ-Pu(100) Sur-face Based on First-principles[J]. Rare Metal Materials and Engineering,2021,50(8):2728~2737.]
DOI:10.12442/j. issn.1002-185X.20200477

复制
文章指标
  • 点击次数:484
  • 下载次数: 1070
  • HTML阅读次数: 285
  • 引用次数: 0
历史
  • 收稿日期:2020-07-04
  • 最后修改日期:2020-08-25
  • 录用日期:2020-08-28
  • 在线发布日期: 2021-09-07
  • 出版日期: 2021-08-31