+高级检索
大面积EBSD方法对电解镍板的研究
作者单位:

兰州理工大学

基金项目:

镍钴资源综合利用国家重点实验室基金资助


Research on Industrial Electrolytic Nickel Plate by Large Area EBSD Method
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文利用大面积EBSD拼接技术,对电解镍板在生长方向上的晶粒形貌及尺寸、择优取向、晶界特征分布等随着沉积的变化进行了研究,并通过SEM观察镍板的微观形貌。结果表明:镍晶粒随着沉积的进行由细小的等轴晶粒转变为粗大的柱状晶,尺寸呈微纳米级;晶体取向在沉积初始没有强的择优取向,最终转变为<001>取向;沉积初期,在大角度晶界占比80%以上,随着沉积进行,大小晶界的比例在沉积层不同位置出现差异;镍沉积层中大量相邻晶粒间以∑3、∑9、∑27孪晶界为界,其中∑3晶界频率达到65%以上。在始极片不同表面形成的镍沉积层长大方式不同,细晶粒表面按照形核长大方式生长,在自由生长的表面镍原子直接并入晶格,没有经历形核过程。

    Abstract:

    In this paper, large-area EBSD splicing technology was used to study the crystal grain morphology and size, preferred orientation, and grain boundary feature distribution of the electrolytic nickel plate in the growth direction, and the microstructure of the nickel plate is observed by SEM. The results show that the nickel crystal grains change from small equiaxed crystal grains to coarse columnar crystals with the size of micro-nano scale as the deposition progresses; the crystal orientation does not have a strong preferred orientation at the beginning of the deposition, and finally changes to the <001> orientation. In the initial stage of deposition, the large-angle grain boundaries accounted for more than 80%; as the deposition progresses, the proportions of large and small grain boundaries vary in different positions of the deposition layer; a large number of adjacent grains in the nickel deposition layer are separated by ∑3, ∑9, ∑27 twin boundaries, and the ∑3 grain boundary frequency reaches more than 65%. The nickel deposition layer formed on the different surfaces of the starting sheet grows in different ways. The surface of the fine grains grows in the nucleation and growth way, and the nickel atoms on the free-growing surface are directly incorporated into the crystal lattice without undergoing the nucleation process.

    参考文献
    参考文献 References
    [1] Volkov A M, Karyagin D A, Letnikov M N, et al. Metallurgist[J]. 2020,64(3):362-369.
    [2] Igor Burmistrov, Nikolay Gorshkov et al. Renewable Energy[J]. 2020,157:1-8.
    [3] Xi Ke, Zouxin Zhang, Yifeng Cheng, et al. Science China Materials[J]. 2018,61(3):353-362.
    [4] HE Huan-hua(何焕华), CAI Qiao-fang(蔡乔方). Nickel and cobalt metallurgy in China[M]. Beijing: Metallurgical Press, 2009:559-560.
    [5] Huang Zhangqi(黄章崎), Shi Haiming(石海明), Zhu Huiwen(朱惠文) et al. Plating & Finishing(电镀与精饰)[J]. 2020,42(06):1-7.
    [6] GB/T 6516-2010, Electrolytic nickel(电解镍) [S].
    [7] King M K, Mahapatra M K. Journal of Materials Engineering and Performance[J]. 2020:1-12.
    [8] Yang Feng, Zhang Xiaofeng, Yang Hong, et al. Transactions of Nonferrous Metals Society of China[J]. 2019, 29(2):424-436.
    [9] Lida Shen, Mingzhi Fan, Mingbo Qiu, et al. Applied surface science[J]. 2019,483:706-712.
    [10] Xia Tiandong(夏天东), Zhang Xiaoyu(张晓宇),Xu Yangtao(徐仰涛), et al. Transactions of Nonferrous Metals Society of China[J]. 2015,25(11):3133-3140.
    [11] Shibata A, Noda H, Sone M, et al. Thin Solid Films[J]. 2010, 518(18):P.5153-5158.
    [12] Hossein Alimadadi, Alice Bastos Fanta, Takeshi Kasama, et al. Surface & Coatings Technology[J]. 2016,299:1-6.
    [13] Yang Ping(杨平). Electron backscatter diffraction technique and application(电子背散射衍射技术及其应用)[M].Beijing: Metallurgical Industry Press, 2007.
    [14] Yang Xiaopeng(杨小鹏), H. Jiang, H. S, et al. The 10th National Academic Conference on Materials Science and Image Technology and Innovation Forum for University-Local-Enterprise Industry-University-Research Cooperation(第十届全国材料科学与图像科技学术会议暨校地企产学研合作创新论)[C] Materials Science Branch of Chinese Society of Stereology. 2016: 33-39.
    [15] Xu Yangtao, Huang Kai, Zhu Zhenxu, et al. Surface & Coatings Technology[J]. 2019, 370: 1-10.
    [16] SCHARIFKER B, HILLS G. Electrochimica acta[J]. 1983, 28: 879-889.
    [17] Watanabe(渡边辙). Nano Plating(纳米电镀)[M]. Beijing: Chemical Industry Press,2007: 74-91.
    [18] ZHOU Shao-min(周绍民). Electrodeposition of Metals -Principles and Research Methods(金属电沉积—原理与研究方法)[M]. Shanghai: Shanghai science and technology press, 1987: 267?269.
    [19] Reddy, A. K. N, Rajagopalan, S.K. Journal of electroanalytical Chemistry[J]. 1963, 6: 141–152.
    [20] Alimadadi H, Fanta A B, Somers M A J, et al. Surface and Coatings Technology[J]. 2014, 254:207-216.
    [21] Jie Wanqi(介万奇). Principle and technology of crystal growth(晶体生长原理与技术)[M]. Beijing: Science Press, 2010:645-647.
    [22] Qi Yanfei(齐艳飞),Wang Bo(王波), Zhou Jingyi(周景一),et al. Transactions of Materials and Heat Treatment[J]. 2016,37(09):172-177.
    [23] Humphreys F J, Ferry M. Scripta Materialia [J]. 1996, 35(1):99-105.
    [24] Xu Yangtao, Dai Yujie, Zhang wei, et al. Surface & Coatings Technology[J]., 2017, 330:170-177.
    [25] V. Randle, Acta Materialia[J]. 1999, 47:4187–4196.
    [26] Tang Changbin(唐长斌), Xue Juanqing(薛娟琴). Metallurgical Electrochemistry(冶金电化学)[M]. Beijing: Metallurgical Industry Press, 2013:252-257.
    [27] Rahimi E, Davoodi A, Rashid A R K. Materials Letters [J]. 2018, 210:341-344.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐仰涛,刘志健,王超.大面积EBSD方法对电解镍板的研究[J].稀有金属材料与工程,2021,50(12):4372~4380.[Xu Yangtao, Liu Zhijian, Wang Chao. Research on Industrial Electrolytic Nickel Plate by Large Area EBSD Method[J]. Rare Metal Materials and Engineering,2021,50(12):4372~4380.]
DOI:10.12442/j. issn.1002-185X.20210004

复制
文章指标
  • 点击次数:635
  • 下载次数: 1178
  • HTML阅读次数: 113
  • 引用次数: 0
历史
  • 收稿日期:2021-01-04
  • 最后修改日期:2021-02-05
  • 录用日期:2021-03-17
  • 在线发布日期: 2022-01-09
  • 出版日期: 2021-12-24