+高级检索
CoCrFeNiNbx高熵合金的研究进展
作者:
作者单位:

西安交通大学 金属材料强度国家重点实验室

基金项目:

国家自然科学基金 (51621063, 51790482, 51722104);111工程2.0 (BP2018008)


Research Development of CoCrFeNiNbx High Entropy Alloys
Author:
Affiliation:

State Key Laboratory for Mechanical Behavior of Materials, Xi''an Jiaotong University

Fund Project:

National Natural Science Foundation of China (51621063, 51790482, 51722104); the 111 Project 2.0 of China (BP2018008)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [58]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    近十几年来,作为一种研究热门的新型合金,高熵合金已获得了材料界广泛的关注。其中,以等原子比CoCrFeNiMn合金为原型,已报道大量力学性能优异的fcc结构的高熵合金。近几年,由于其优异的铸造成型性能与综合力学性能,共晶高熵合金也逐渐得到科研人员的重视。本文选取CoCrFeNiNbx合金体系,以析出强化型高熵合金和共晶型高熵合金为主要研究对象,分别从成分设计,组织演变,力学性能与强韧化机制等方面总结目前的研究进展,最后分析了当前研究的不足并给出了未来研究的方向。

    Abstract:

    High entropy alloys, a new type of hot-research alloy, have received extensive attention in the material industry. Taking equal atomic ratio CoCrFeNiMn as the prototype, numerous fcc-structure high-entropy alloys with excellent mechanical properties have been reported. Recently eutectic high-entropy alloys have attracted more and more attention of scientific researchers due to their excellent casting properties and comprehensive mechanical properties. In this paper, we selecte the CoCrFeNiNbx alloy system, focus on precipitation-strengthened high-entropy alloys and eutectic high-entropy alloys, and summarize the current research progress from the aspects of composition design, microstructure evolution, mechanical properties and strengthening and toughening mechanism. Finally, we analyze the shortcomings of current research and point out the direction of future research.

    参考文献
    [1] Cantor B, Chang ITH, Knight P, et al. Materials Science and Engineering: A, 2004, 375-377: 213-218
    [2] Chen TK, Shun TT, Yeh JW, et al. Surface and Coatings Technology, 2004, 188-189: 193-200
    [3] Hsu CY, Yeh JW, Chen SK, et al. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004, 35a (5): 1465-1469
    [4] Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345 (6201): 1153-1158
    [5] Zhang Z, Mao MM, Wang J, et al. Nat Commun, 2015, 6: 10143
    [6] He JY, Wang H, Huang HL, et al. Acta Materialia, 2016, 102: 187-196
    [7] Zhou YJ, Zhang Y, Wang YL, et al. Applied Physics Letters, 2007, 90 (18): 181904
    [8] Chuang M-H, Tsai M-H, Wang W-R, et al. Acta Materialia, 2011, 59 (16): 6308-6317
    [9] Bachani SK, Wang C-J, Lou B-S, et al. Surface and Coatings Technology, 2020, 403: 126351
    [10] Vrtnik S, Ko?elj P, Meden A, et al. Journal of Alloys and Compounds, 2017, 695: 3530-3540
    [11] Zhang Y, Zuo T, Cheng Y, et al. Sci Rep, 2013, 3: 1455
    [12] Stepanov N, Tikhonovsky M, Yurchenko N, et al. Intermetallics, 2015, 59: 8-17
    [13] Schuh B, Mendez-Martin F, V?lker B, et al. Acta Materialia, 2015, 96: 258-268
    [14] He JY, Liu WH, Wang H, et al. Acta Materialia, 2014, 62: 105-113
    [15] Liu WH, He JY, Huang HL, et al. Intermetallics, 2015, 60: 1-8
    [16] He F, Chen D, Han B, et al. Acta Materialia, 2019, 167: 275-286
    [17] Sunkari U, Reddy SR, Rathod BDS, et al. Sci Rep, 2020, 10 (1): 6056
    [18] He F, Wang Z, Cheng P, et al. Journal of Alloys and Compounds, 2016, 656: 284-289
    [19] Lu W, Luo X, Yang Y, et al. Journal of Alloys and Compounds, 2020, 833: 155074
    [20] He F, Wang ZJ, Shang XL, et al. Materials Design, 2016, 104: 259-264
    [21] Chung D, Ding Z, Yang Y. Advanced Engineering Materials, 2018, 21: 1801060
    [22] Pickering EJ, Jones NG. International Materials Reviews, 2016, 61 (3): 183-202
    [23] Pradeep KG, Tasan CC, Yao MJ, et al. Materials Science and Engineering: A, 2015, 648: 183-192
    [24] Guo S, Hu Q, Ng C, et al. Intermetallics, 2013, 41: 96-103
    [25] Guo S. Materials Science and Technology, 2015, 31 (10): 1223-1230
    [26] Zhang Y, Zhou YJ, Lin JP, et al. Advanced Engineering Materials, 2008, 10 (6): 534-538
    [27] Wang Z, Huang Y, Yang Y, et al. Scripta Materialia, 2015, 94: 28-31
    [28] Ye YF, Wang Q, Lu J, et al. Materials Today, 2016, 19 (6): 349-362
    [29] Wang Z, Guo S, Liu CT. Jom, 2014, 66 (10): 1966-1972
    [30] Dong Y, Lu Y, Jiang L, et al. Intermetallics, 2014, 52: 105-109
    [31] Guo S, Liu CT. Progress in Natural Science: Materials International, 2011, 21 (6): 433-446
    [32] Sheikh S, Mao H, Guo S. Journal of Applied Physics, 2017, 121 (19): 194903
    [33] Lu Y, Dong Y, Guo S, et al. Sci Rep, 2014, 4: 6200
    [34] Zhou K, Wang Z, He F, et al. Additive Manufacturing, 2020, 35: 101410
    [35] Lu Y, Jiang H, Guo S, et al. Intermetallics, 2017, 91: 124-128
    [36] Jiang H, Han KM, Gao XX, et al. Materials Design, 2018, 142: 101-105
    [37] Lucas MS, Wilks GB, Mauger L, et al. Applied Physics Letters, 2012, 100 (25): 251907
    [38] Yeh JW, Chen SK, Lin SJ, et al. Advanced Engineering Materials, 2004, 6 (5): 299-303
    [39] Mishra SS, Yadav TP, Srivastava ON, et al. Journal of Alloys and Compounds, 2020, 832: 153764
    [40] Zhang Y, Li Z, Nie P, et al. Metallurgical and Materials Transactions A, 2012, 44 (2): 708-716
    [41] Miao Z-j, Shan A-d, Wu Y-b, et al. Transactions of Nonferrous Metals Society of China, 2011, 21 (5): 1009-1017
    [42] Sundararaman M, Nalawade S, Singh J, et al. Superalloy 718 and Derivatives, 2012: 737-750.
    [43] Slama C, Servant C, Cizeron G. Journal of Materials Research, 1997, 12 (9): 2298-2316
    [44] Zhang HY, Zhang SH, Cheng M. Advanced Materials Research, 2013, 652-654: 1128-1131
    [45] Galindo-Nava EI, Rae CMF. Materials Science and Engineering: A, 2015, 636: 434-445
    [46] Azadian S, Wei L-Y, Warren R. Materials Characterization, 2004, 53 (1): 7-16
    [47] Lu Q. Electronic Thesis or Dissertation, Ohio State University, 1999.
    [48] Brooks JW. Sixth International Simposium on Superalloys, 1988, held in champion, PA, September 18-22,1988.
    [49] He F, Wang Z, Wang J, et al. Scripta Materialia, 2018, 146: 281-285
    [50] Jiang H, Qiao D, Lu Y, et al. Scripta Materialia, 2019, 165: 145-149
    [51] Jiang H, Jiang L, Qiao D, et al. Journal of Materials Science Technology, 2017, 33 (7): 712-717
    [52] Han K, Jiang H, Huang T, et al. Crystals, 2020, 10: 762
    [53] Chanda B, Das J. Advanced Engineering Materials, 2017: 1700908
    [54] Chanda B, Verma A, Das J. Transactions of the Indian Institute of Metals, 2018, 71 (11): 2717-2723
    [55] Arata JJM, Kumar KS, Curtin WA, et al. International Journal of Fracture, 2001, 111 (2): 163-189
    [56] Chen Y-T, Yeh A-C, Li M-Y, et al. Materials Design, 2017, 119: 235-243
    [57] Ruan JJ, Ueshima N, Oikawa K. Journal of Alloys and Compounds, 2020, 814: 152289
    [58] Lei Q, Ramakrishnan BP, Wang S, et al. Materials Science and Engineering: A, 2017, 706: 115-125
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王永兴,张东东,张金钰,刘刚,孙军. CoCrFeNiNbx高熵合金的研究进展[J].稀有金属材料与工程,2022,51(2):743~751.[Wang Yongxing, Zhang Dongdong, Zhang Jinyu, Liu Gang, Sun Jun. Research Development of CoCrFeNiNbx High Entropy Alloys[J]. Rare Metal Materials and Engineering,2022,51(2):743~751.]
DOI:10.12442/j. issn.1002-185X.20210128

复制
文章指标
  • 点击次数:747
  • 下载次数: 1625
  • HTML阅读次数: 148
  • 引用次数: 0
历史
  • 收稿日期:2021-02-15
  • 最后修改日期:2021-03-27
  • 录用日期:2021-04-16
  • 在线发布日期: 2022-03-09
  • 出版日期: 2022-02-28