+高级检索
可降解血管支架用Mg-4.0Zn-0.2Mn-0.2Ca微细管的体外降解行为
作者:
作者单位:

北京工业大学 材料与制造学部,北京 100124

基金项目:

国家重点基础研究发展计划(2016YFB0301101);北京市教委资助项目(KZ20180005005);国家自然科学基金(51801004);北京市自然科学基金(2192006)


In-vitro Degradation Behavior of Mg-4.0Zn-0.2Mn-0.2Ca Micro-tube for Biodegradable Vascular Stent
Affiliation:

Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

Fund Project:

National Key Research and Development Program of China (2016YFB0301101); Beijing Municipal Commission of Education Key Science and Technology Projects (KZ201810005005); National Natural Science Foundation of China (51801004); Beijing Natural Science Foundation, China (2192006)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    通过浸泡实验和电化学测试研究了Mg-4.0Zn-0.2Mn-0.2Ca(质量分数)微细管的体外降解行为与腐蚀机理。结果表明,退火处理可以提高微细管的耐腐蚀性。长期浸泡实验表明腐蚀过程相对均匀,退火微细管在Hank's溶液中的腐蚀速率约为0.30 mm/a。在浸泡初期,退火管材表面生成Mg(OH)2,形成保护膜,阻碍腐蚀进行。虽然Mg(OH)2膜上形成的羟基磷灰石(HA)可以进一步降低腐蚀速率,但是镁基体中粗大的第二相会增强电偶腐蚀效应,并且生成的大量氢气,从而破坏HA膜,使腐蚀继续进行。

    Abstract:

    The in-vitro degradation behavior and corrosion mechanism of Mg-4.0Zn-0.2Mn-0.2Ca (wt%) micro-tube was investigated by the immersion tests and electrochemical tests. The results show that the corrosion resistance of the micro-tubes can be improved by the annealing treatment. The long-term immersion tests reveal that the corrosion process is relatively uniform, and the corrosion rate of the annealed micro-tube in Hank's solution is about 0.30 mm/a. During the initial stage of immersion, Mg(OH)2 is formed on the surface of the annealed micro-tubes, forming a protective film to hinder the corrosion progress. Although the formed hydroxyapatite (HA) on Mg(OH)2 film can further reduce the corrosion rate, the coarse secondary phases in Mg matrix can enhance the galvanic corrosion effect. The generated abundant hydrogen may destroy the HA film, thus promoting the corrosion process.

    参考文献
    [1] Finegold J A, Asaria P, Francis D P. International Journal of Cardiology[J], 2013, 168(2): 934
    [2] McAloon C J, Boylan L M, Hamborg T et al. International Journal of Cardiology[J], 2016, 224: 256
    [3] Yang H T, Wang C, Liu C Q et al. Biomaterials[J], 2017, 145: 92
    [4] Hu T Z, Yang C, Lin S et al. Materials Science and Engineering C[J], 2018, 91: 163
    [5] Fu Junjian, Du Wenbo, Du Xian et al. Rare Metal Materials and Engineering[J], 2020, 49(10): 3576 (in Chinese)
    [6] Moravej M, Mantovani D. International Journal of Molecular Sciences[J], 2011, 12(7): 4250
    [7] Hermawan H, Dube D, Mantovani D. Acta Biomaterialia[J], 2010, 6(5): 1693
    [8] Pauck R G, Reddy B D. Medical Engineering & Physics[J], 2015, 37(1): 7
    [9] Witte F. Acta Biomaterialia[J], 2010, 6(5): 1680
    [10] Zheng Y F, Gu X N, Witte F. Materials Science and Engineering R: Reports[J], 2014, 77: 1
    [11] Wang J F, Zhou Y F, Yang Z Y. Materials Science and Engineering C[J], 2018, 90: 504
    [12] Hornberger H, Virtanen S, Boccaccini A R. Acta Biomaterialia[J], 2012, 8(7): 2442
    [13] Zhang Z, Zhang J H, Wang J et al. International Journal of Minerals, Metallurgy and Materials[J], 2021, 28(1): 30
    [14] Yang M, Liu D B, Zhang R F et al. Rare Metal Materials and Engineering[J], 2018, 47(1): 93
    [15] Mao L, Zhou H, Chen L et al. Journal of Alloys and Compounds[J], 2017, 720: 245
    [16] Staiger M P, Pietak A M, Huadmai J et al. Biomaterials[J], 2006, 27(9): 1728
    [17] Zhang Y, Li J X, Li J Y. Journal of the Mechanical Behavior of Biomedical Materials[J], 2018, 80: 246
    [18] Jamesh M I, Wu G S, Zhao Y et al. Corrosion Science[J], 2015, 91: 160
    [19] Cihova M, Martinelli E, Schmutz P et al. Acta Biomaterialia[J], 2019, 100: 398
    [20] Cho D H, Lee B W, Park J Y et al. Journal of Alloys and Compounds[J], 2017, 695: 1166
    [21] Pan H, Pang K, Cui F Z et al. Corrosion Science[J], 2019, 157: 420
    [22] Du W B, Liu K, Ma K et al. Journal of Magnesium and Alloys[J], 2018, 6(1): 1
    [23] Cheng Y F, Du W B, Liu K et al. Transactions of Nonferrous Metals Society of China[J], 2020, 30(2): 363
    [24] Yao H, Xiong Y, Zha X Q et al. Rare Metal Materials and Engineering[J], 2021, 50(6): 1919
    [25] Lee Y L, Chu Y R, Li W C et al. Corrosion Science[J], 2013, 70: 74
    [26] Wang J F, Ma Y, Gao S F et al. Materials & Design[J], 2018, 153: 308
    [27] Chang J W, Fu P H, Guo X W et al. Corrosion Science[J], 2007, 49(6): 2612
    [28] Yin S Q, Duan W C, Liu W H et al. Corrosion Science[J], 2020, 166: 108 419
    [29] Zhou W R, Zheng Y F, Leeflang M A et al. Acta Biomaterialia[J], 2013, 9(10): 8488
    [30] Bian D, Jiang J J, Zhou W R et al. Materials Letters[J], 2018, 211: 261
    [31] Li W Q, Zhu S J, Sun Y F et al. Journal of Alloys and Com-pounds[J], 2020, 835: 155 369
    [32] Witte F, Fischer J, Nellesen J et al. Biomaterials[J], 2006, 27(7): 1013
    [33] Song Y W, Shan D Y, Chen R S et al. Materials Science and Engineering C[J], 2009, 29(3): 1039
    [34] Li Z J, Gu X N, Lou S Q et al. Biomaterials[J], 2008, 29(10): 1329
    [35] Wang X J, Chen Z N, Ren J et al. Corrosion Science[J], 2020, 164: 108 318
    [36] Qiao X Y, Yu K, Chen L J et al. Rare Metal Materials and Engineering[J], 2018, 47(3): 773
    [37] Yin S Q, Duan W C, Liu W H et al. Corrosion Science[J], 2020, 177: 108 962
    [38] Bakhsheshi-Rad H R, Abdul-Kadir M R, Idris M H et al. Corrosion Science[J], 2012, 64: 184
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

付军健,杜文博,孙健,Adil Mansoor,刘轲,杜宪,李淑波.可降解血管支架用Mg-4.0Zn-0.2Mn-0.2Ca微细管的体外降解行为[J].稀有金属材料与工程,2022,51(5):1572~1581.[Fu Junjian, Du Wenbo, Sun Jian, Adil Mansoor, Liu Ke, Du Xian, Li Shubo. In-vitro Degradation Behavior of Mg-4.0Zn-0.2Mn-0.2Ca Micro-tube for Biodegradable Vascular Stent[J]. Rare Metal Materials and Engineering,2022,51(5):1572~1581.]
DOI:10.12442/j. issn.1002-185X.20210826

复制
文章指标
  • 点击次数:388
  • 下载次数: 1060
  • HTML阅读次数: 185
  • 引用次数: 0
历史
  • 收稿日期:2021-09-17
  • 最后修改日期:2021-11-12
  • 录用日期:2022-01-22
  • 在线发布日期: 2022-05-31
  • 出版日期: 2022-05-30