+高级检索
激光工艺参数对选区激光熔化钽微观组织和力学性能的影响
作者:
作者单位:

1.沈阳工业大学 材料科学与工程学院,辽宁 沈阳 110870;2.广东省科学院 新材料研究所,广东 广州 510650;3.广东省金属强韧化技术与应用重点实验室,广东 广州 510650;4.国家钛及稀有金属粉末冶金工程技术研究中心,广东 广州 510650;5.河源市省科院研究院,广东 河源 517000

基金项目:

Key Realm R&D Program of Guangdong Province (2018B090904004), Key Research Program of Guangzhou(202206040001), GDASHY’ Project of Science and Technology Development (2021GDASHY-0107), Science and Technology Program of Qingyuan (2021DZX028), Guangdong Academy of Science Project of Science and Technology Development (2020GDASYL-20200103142, 2022GDASZH-2022010107)


Effect of Processing Parameters on Microstructure and Mechanical Properties of Ta Prepared by Selective Laser Melting
Author:
  • Qin Feng 1,2,3,4

    Qin Feng

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Shen Zhengyan 2,3,4

    Shen Zhengyan

    Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Shi Qi 2,3,4

    Shi Qi

    Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhou Ge 1

    Zhou Ge

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yao Dao 5

    Yao Dao

    Heyuan Institute of Guangdong Academy of Sciences, Heyuan 517000, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhao Yumin 1,2,3,4

    Zhao Yumin

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Liu Xin 2,3,4

    Liu Xin

    Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Chen Lijia 1

    Chen Lijia

    School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;2.Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;3.Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China;4.National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China;5.Heyuan Institute of Guangdong Academy of Sciences, Heyuan 517000, China

Fund Project:

Key Realm R&D Program of Guangdong Province (2018B090904004); Key Research Program of Guangzhou (202206040001); GDASHY Project of Science and Technology Development (2021GDASHY-0107); Science and Technology Program of Qingyuan (2021DZX028); Guangdong Academy of Science Project of Science and Technology Development (2020GDASYL-20200103142, 2022GDASZH-2022010107)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    研究了单、双层扫描策略和能量密度(246~640 J/mm3)对选区激光熔化钽显微组织及力学性能的影响。采用扫描电子显微镜和电子背散射衍射对选区激光熔化钽的显微组织进行表征,并对其显微硬度和拉伸性能进行检测。结果表明,选区激光熔化钽显微组织由明显向上生长的柱状晶构成,双层扫描后的钽具有更细的晶粒尺寸。随着输入能量密度的提高,选区激光熔化钽的强度、显微硬度和塑性均具有明显的上升趋势。此外,双层扫描工艺可进一步提高材料密度,且在保留强度的基础上,增强材料塑性。在能量密度为640 J/mm3(双层扫描)时,金属钽性能最优,显微硬度、极限抗拉伸强度及延伸率分别为2307 MPa,527 MPa和11.4%。

    Abstract:

    The effects of single-layer and double-layer scanning strategies and energy density (246–640 J/mm3) on the microstructures and mechanical properties of Ta prepared by selective laser melting (SLM) were investigated. The microstructure of SLM-processed Ta was characterized by scanning electron microscope and electron backscatter diffractometer. The microhardness and tensile properties were also tested. Results show that the Ta microstructure is composed of columnar crystals with obviously upward growth trend and the Ta prepared by double-layer scanning has finer grain size. With increasing the input energy density, the strength, microhardness, and ductility of the as-built Ta are significantly improved. In addition, the double-layer scanning strategy can further improve the densification of Ta specimen, and even increases the ductility without strength loss. When the energy density is 640 J/mm3 (double-layer scanning), the as-built Ta exhibits optimal properties: the microhardness, ultimate tensile strength, and elongation are 2307 MPa, 527 MPa, and 11.4%, respectively.

    参考文献
    [1] Shahreza B M, Huot J, Antonov M et al. International Journal of Refractory Metals and Hard Materials[J], 2023, 111:
    [106] 079
    [2] Li Xu, Zhang Zhibin, He Pengfei et al. Rare Metal Materials and Engineering[J], 2023, 52(3): 1131 (in Chinese)
    [3] Luo C Q, Wang C, Wu X D et al. Materials Science and Engineering C[J], 2021, 129: 112 382
    [4] Huang G, Pan S T, Qiu J X. Colloids and Surfaces B: Biointerfaces[J], 2022, 210: 112 229
    [5] Guo Y, Chen C, Wang Q B et al. Transactions of Nonferrous Metals Society of China[J], 2022, 32(9): 2922
    [6] Yang Kun, Wang Jian, Tang Huiping. Rare Metal Materials and Engineering[J], 2022, 51(10): 3922 (in Chinese)
    [7] Guo Yanhua, Dai Guoqing, Sun Zhonggang et al. Rare Metal Materials and Engineering[J], 2022, 51(12): 4733 (in Chinese)
    [8] Alnajjar M, Christien F, Barnier V et al. Corrosion Science[J], 2020, 168: 108 585
    [9] Stoll P, Spierings A, Wegener K. Procedia CIRP[J], 2020, 168: 108 585
    [10] Zhang J G, Huang D Y, Hu F L et al. Rare Metal Materials and Engineering[J], 2022, 51(10): 3619
    [11] Nicoletto G. International Journal of Fatigue[J], 2019, 128: 105 211
    [12] Xiong Y Z, Gao R N, Zhan H et al. Journal of the Mechan- ical Behavior of Biomedical Materials[J], 2020, 104: 103 673
    [13] Mao B Y, Liu Y, Ye J W et al. Rare Metal Materials and Engineering[J], 2023, 52(3): 860
    [14] Sungail C, Abid A D. Metal Powder Report[J], 2020, 75(1): 28
    [15] Zhou L B, Yuan T C, Li R D et al. Materials Science and Engineering A[J], 2017, 707(7): 443
    [16] Livescu V, Knapp C M, Gray G T et al. Materialia[J], 2018, 1: 15
    [17] Thijs L, Sistiaga M L M, Wauthle R et al. Acta Materialia[J], 2020, 168: 108 585
    [18] Liu B, Li B Q, Li Z H. Results in Physics[J], 2019, 12: 982
    [19] Pan L, Zhang C L, Liang H Y et al. Materials Research Ex- press[J], 2020, 7(5): 56 503
    [20] Tan C, Shi Q, Li K F et al. International Journal of Refractory Metals and Hard Materials[J], 2023, 110: 106 008
    [21] Wei P, Wei Z G, Zhen C et al. Applied Physics A[J], 2017, 123(8): 540
    [22] Kurz W, Bezen?on C, G?umann M. Science and Technology of Advanced Materials[J], 2001, 2(1): 185
    [23] Wang J, Pan Z X, Wang Y F et al. Additive Manufacturing[J], 2020, 34: 101 240
    [24] Wu B T, Pan Z X, Ding D H et al. Additive Manufacturing[J], 2018, 23: 151
    [25] Wang G, Ouyang H, Fan C et al. Materials Research Letters[J], 2020, 8(8): 283
    [26] Gorsse S, Hutchinson C, Goune M et al. Science and Technology of Advanced Materials[J], 2017, 18(1): 584
    [27] Mughrabi H. Acta Metallurgica[J], 1983, 31(9): 1367
    [28] Liu L F, Ding Q Q, Zhong Y et al. Materials Today[J], 2018, 21(4): 354
    相似文献
    引证文献
引用本文

秦奉,申正焱,施麒,周舸,姚岛,赵宇敏,刘辛,陈立佳.激光工艺参数对选区激光熔化钽微观组织和力学性能的影响[J].稀有金属材料与工程,2023,52(9):3026~3036.[Qin Feng, Shen Zhengyan, Shi Qi, Zhou Ge, Yao Dao, Zhao Yumin, Liu Xin, Chen Lijia. Effect of Processing Parameters on Microstructure and Mechanical Properties of Ta Prepared by Selective Laser Melting[J]. Rare Metal Materials and Engineering,2023,52(9):3026~3036.]
DOI:10.12442/j. issn.1002-185X.20230031

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-17
  • 最后修改日期:2023-04-11
  • 录用日期:2023-04-13
  • 在线发布日期: 2023-09-22
  • 出版日期: 2023-09-21