+高级检索
Mg-6Gd-3Y-1.5Zn-0.6Zr镁合金热变形行为及动态再结晶模型
作者:
作者单位:

江苏科技大学 材料科学与工程学院,江苏 镇江 212003

中图分类号:

TG146.22

基金项目:

江苏省高校自然科学基金面上项目(22KJB0003);广东省基础与应用基础研究基金(2020A1515110394)


Hot Deformation Behavior and Dynamic Recrystallization Model of Mg-6Gd-3Y-1.5Zn-0.6Zr Magnesium Alloy
Affiliation:

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Fund Project:

Jiangsu Provincial Natural Science Foundation General Project (Project No. 22KJB0003), Guangdong Provincial Basic and Applied Basic Research Fund (Project No. 2020A1515110394)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    为了研究Mg-6Gd-3Y-1.5Zn-0.6Zr合金的热变形行为及其动态再结晶相关模型,通过Gleeble-3500热模拟试验机在350~500 ℃、0.001~1 s-1变形条件下对合金进行热压缩试验,并借助金相显微镜和透射电子显微镜研究其动态再结晶行为。基于真应力应变曲线,构建了动态再结晶临界应变模型与动力学模型。结果表明:Mg-6Gd-3Y-1.5Zn-0.6Zr合金的动态再结晶行为受变形温度和应变速率的共同影响,随着变形温度升高和应变速率降低,合金的动态再结晶更加充分。合金在变形后,组织呈现典型的双峰结构。块状长周期堆叠有序(LPSO)相可通过粒子激发形核(PSN)机制促进再结晶形核,而片层状LPSO相则发生了扭折现象。结合变形后的显微组织分析结果,证明所建立的动态再结晶模型与试验结果高度一致,表明该模型可有效预测合金的动态再结晶情况。

    Abstract:

    To study the hot deformation behavior and related dynamic recrystallization models of Mg-6Gd-3Y-1.5Zn-0.6Zr alloy, single-pass hot compression experiments were conducted on the alloy using a Gleeble-3500 thermal simulation testing machine under deformation conditions of 350–500 °C and 0.001–1 s-1. The dynamic recrystallization behavior was investigated by OM and TEM. Based on the true stress-strain curve, a critical strain model and a kinetics model for dynamic recrystallization were established. The results show that the dynamic recrystallization behavior of Mg-6Gd-3Y-1.5Zn-0.6Zr alloy is influenced by both deformation temperature and strain rate. With the increase in deformation temperature and the decrease in strain rate, the dynamic recrystallization of the alloy becomes more complete. After deformation, the microstructure of the alloy exhibits a typical bimodal structure. The blocky LPSO phase can promote nucleation of recrystallization through the particle stimulation nucleation (PSN) mechanism, while the lamellar LPSO phase undergoes a kink phenomenon. The analysis results of the microstructure after deformation prove that the established dynamic recrystallization model is highly consistent with the experimental results, indicating that this model can effectively predict the dynamic recrystallization behavior of the alloy.

    参考文献
    [1] Wang Sishu, Zang Qianhao, Chen Hongmei et al. Journal of Iron and Steel Research International[J], 2023, 30(8): 1633
    [2] Zhang Yuan, Liu Wei, Liu Yun et al. Rare Metal Materials and Engineering[J], 2023, 52(9): 3065
    [3] Shi Fengjian, Piao Nanying, Wang Hao et al. Journal of Materials Research and Technology[J], 2023, 25: 799
    [4] Gong Yuan, He Junguang, Wen Jiuba et al. Rare Metal Materials and Engineering[J], 2023, 52(2): 508
    [5] Guo Yuhang, He Xuancheng, Dai Yibo et al. Materials Science and Engineering A[J], 2022, 860: 144329
    [6] You Sihang, Huang Yuanding, Kainer K U et al. Journal of Magnesium and Alloys[J], 2017, 5(3): 239
    [7] Jin Siyuan, Liu Hongyu, Wu Ruizhi et al. Materials Science and Engineering A[J], 2020, 788: 139611
    [8] Zhang Jinghuai, Liu Shujuan, Wu Ruizhi et al. Journal of Magnesium and Alloys[J], 2018, 6(3): 277
    [9] Jung I H, Sanjari M, Kim J et al. Scripta Materialia[J], 2015, 102: 1
    [10] Kawamura Y, Hayashi K, Inoue A et al. Materials Transactions[J], 2001, 42(7): 1172
    [11] Ding Ning, Du Wenbo, Zhu Xunming et al. Materials Science and Engineering A[J], 2023, 864: 144590
    [12] Hagihara K, Kinoshita A, Sugino Y et al. Acta Materialia[J], 2010, 58(19): 6282
    [13] Li Kai, Chen Zhiyong, Chen Tao et al. Journal of Alloys and Compounds[J], 2019, 792: 894
    [14] Wu Jing, Ikeda K I, Shi Q et al. Materials Characterization[J], 2019, 148: 233
    [15] Li Juncai, He Zongling, Fu Penghuai et al. Materials Science and Engineering A[J], 2016, 651: 745
    [16] Pan Fusheng(潘复生), Jiang Bin(蒋 斌). Acta Metallurgica Sinica(金属学报)[J], 2021, 57(11): 1362
    [17] Sakai T, Jonas J J. Acta Metallurgica[J], 1984, 32(2): 189
    [18] Hadadzadeh A, Mokdad F, Wells M A et al. Materials Science and Engineering A[J], 2018, 720: 180
    [19] Liu Yingying(刘莹莹), Li Jiayi(李嘉懿), Guo Wenhu(郭文虎) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(11): 4137
    [20] Cai Jun, Chen Lin, Han Peng et al. Journal of Materials Research and Technology[J], 2022, 21: 1724
    [21] Nie J F, Zhu Y M, Morton A J. Metallurgical and Materials Transactions A[J], 2014, 45(8): 3338
    [22] Sellars C M, Whiteman J A. Metal Science[J], 1979, 13(3–4): 187
    [23] Quan Guozheng, Zhang Kaikai, An Chao et al. Computational Materials Science[J], 2018, 149: 73
    [24] Xu Yan, Hu Lianxi, Sun Yu. Transactions of Nonferrous Metals Society of China[J], 2014, 24(6): 1683
    [25] Kang Wei, Lu Liwei, Feng Longbiao et al. Journal of Magnesium and Alloys[J], 2023, 11(1): 317
    [26] Zheng Ce, Chen Shuaifeng, Cheng Ming et al. Journal of Magnesium and Alloys[J], 2023, 11(11): 4218
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈佳宝,臧千昊,陈子涵,朱治愿.Mg-6Gd-3Y-1.5Zn-0.6Zr镁合金热变形行为及动态再结晶模型[J].稀有金属材料与工程,2025,54(6):1543~1549.[Shen Jiabao, Zang Qianhao, Chen Zihan, Zhu Zhiyuan. Hot Deformation Behavior and Dynamic Recrystallization Model of Mg-6Gd-3Y-1.5Zn-0.6Zr Magnesium Alloy[J]. Rare Metal Materials and Engineering,2025,54(6):1543~1549.]
DOI:10.12442/j. issn.1002-185X.20240087

复制
文章指标
  • 点击次数:25
  • 下载次数: 99
  • HTML阅读次数: 50
  • 引用次数: 0
历史
  • 收稿日期:2024-02-20
  • 最后修改日期:2024-04-13
  • 录用日期:2024-04-18
  • 在线发布日期: 2025-06-10
  • 出版日期: 2025-06-09