摘要
钛合金因具有高比强度、低密度、耐腐蚀性、抗氧化性、高温稳定性以及低中子截面等特点,逐渐被用作船舶和空间核动力装置的关键部件。为提高钛合金抗辐照性能,推进钛合金在核工程领域广泛应用,不少研究人员在钛合金辐照效应等关键问题研究上做出了很大努力。本文回顾了钛及钛合金在核领域的发展与辐照效应研究,全面综述了不同粒子辐照(中子、离子等)下,多种先进钛合金中辐照缺陷演变及相互作用机制,还总结了服役条件(温度、应力、辐照)对钛合金的硬度、拉伸、疲劳以及蠕变等力学性能的影响规律。最后,基于目前核用钛合金研究现状,展望了未来钛合金辐照效应的研究方向和改善抗辐照性能的发展趋势。
随着全球能源危机日益加剧,核能作为一种高效、优质能源,备受世界各国瞩
钛及钛合金常被用于压水堆(PWR)二次冷却回路的冷凝器管(如

图1 压水堆零部件和材料示意图
Fig.1 Schematic diagram of PWR components and material
日本学者将TiAl合金设计为稳态托卡马克反应堆的包层结构材
俄罗斯将大量钛合金板材、管材、锻件应用在核潜艇上,且技术位居世界领先地
目前,西方发达国家都在快速开发新型耐辐照、强塑性良好的放射性快速衰减核用钛合金用于反应堆壳体、热交换器、蒸汽发生器等结构。俄罗斯首先对反应堆壳体用钛合金提出使役性能和合金成分设计要
Zháňal

图2 钛合金在不同温度下中子辐照缺陷的TEM照片
Fig.2 TEM micrographs of non-irradiated (a–b, e–f) and irradiated (c–d, g–h) CG Ti (a–d) and UFG Ti (e–h) at different temperatures: (a, c, e, g) 25 ℃; (b, d, f, h) 300
然而,在300 ℃的条件下,无论是未辐照还是辐照过的样品,都出现了回复现象,即位错密度的减少和晶粒的轻微增长。因此,晶粒尺寸对辐照引入的缺陷簇/位错环的分布和密度有显著影响。
当加入多种合金元素后观察到不同的辐照效应。室温辐照等轴晶Ti-6%Ta(质量分数)合金时,随γ射线辐照剂量增加(0~200 kGy),位错环密度和尺寸先增加后减少,100 kGy时达到峰值,200 kGy后迅速降
除晶粒尺寸和合金元素外,辐照条件和显微组织也会影响缺陷的形成与演变。低剂量或室温辐照时,TiAl合金中形成平面缺陷簇和位错

图3 辐照后双峰结构中大尺寸和小尺寸α2-Ti3Al中的空洞和辐照后双相结构中γ-TiAl和α2-Ti3Al中的空洞(箭头为辐照前存在的制造 孔隙)
Fig.3 Cavities in irradiated bimodal structure of large size (a) and small size (b) α2-Ti3Al and cavities in irradiated dual phase structure of γ-TiAl (c) and α2-Ti3Al (d) (pores existing prior to irradiation, as indicated by arrows

图4 红外测温仪下辐照TiAl样品的平均温度分布与1073和1273 K辐照后的微观结构
Fig.4 Average temperature distribution of the TiAl irradiated sample measured by an infrared pyrometer (a) and microstructures of the TiAl samples after irradiation at 1073 (b) and 1273 K (c
Ma
辐照诱导偏析(RIS)是金属材料辐照时产生的扩散驱动现
考虑到嬗变反应((n, α),(n, p),n为中子,α为α粒子,p为质子)产物氢和氦会导致钛合金肿胀、氢脆等力学性能恶化现象。An
辐照后钛合金发生明显的辐照硬化,而辐照硬化程度取决于损伤剂量、辐照温度、缺陷密度以及微观结构等因素。Jin

图5 400 kV原位电子辐照前后Ti-50.6%Ni(原子分数)SMAs样品的微观结构和SAED花样
Fig.5 Microstructures and SAED patterns of Ti-50.6at% Ni SMAs sample before (a) and after (b) in-situ electron irradiation at 400 k

图6 TiAl合金硬度和缺陷密度随辐照温度的变化曲线
Fig.6 Hardness and defect density as a function of the irradiation temperature of TiAl allo
研究表明不同微观结构具有不同的抗辐照能力,进而对整体硬化产生不同程度的贡献。Wu

图7 TiAl合金纳米压痕试验中不同位置的显微组织和辐照前后α2/γ片层、γ相、β相纳米硬度随深度的变化曲线
Fig.7 Microstructures of TiAl alloy at different positions in the nanoindentation tests: (a) A-α2/γ lamella, (c) B-γ phase, and (e) C-β phase; curves of nanohardness with depth in the α2/γ lamella (b), γ phase (d), and β phase (f) before and after ion irradiatio
低温辐照时(≤0 ℃),点缺陷和团簇迁移能力相对弱的情况下,钛合金的力学性能受到极端温度和辐射条件的影

图8 低温下钛合金辐照前后EL和YS的变化曲线
Fig.8 Curves of EL (a) and YS (b) of titanium alloys before and after irradiation at low temperatur
室温至350 ℃辐照时,点缺陷和团簇的迁移能力、显微组织、拉伸温度等因素对力学性能产生影

图9 25~350 ℃钛合金辐照前后YS和EL的变化曲线
Fig.9 Curves of YS and EL of titanium alloys before and after irradiation at 25–350 ℃: (a) Ti-5Al-2.5Sn (annealed) and Ti-6Al-4V (mill-annealed); (b) Ti-6.5Al (annealed); (c) Ti-6Al-4V (annealed); (d) Ti-15Mo-5Cr (annealed
相同辐照温度下,Ti-15Mo-5Cr合金在25、466以及566 ℃拉伸时,YS和EL都降低,而在166 ℃拉伸时,YS和EL则升高;在336 ℃拉伸后出现YS和EL分别增加和减

图10 室温下钛合金辐照前后强度和延伸率的变化曲线
Fig.10 Curves of strength and EL of titanium and its alloys before and after irradiation at room temperature: (a) Ti-6Al-4V (rolling); (b) T
高温辐照时的力学响应如

图11 高温下钛合金辐照前后YS和EL的变化曲线
Fig.11 Curves of YS and EL of titanium alloys before and after irradiation at high temperatur
低温至高温辐照下,大部分钛合金在辐照后表现出硬化和脆化,特别是在α+β型合金中更为明显。同时,拉伸温度对不同钛合金的强度和塑性有着不同趋势的影响。因此,不同成分的钛合金在不同辐照或拉伸温度下表现出的强度和塑性的异常变化还需根据实际服役条件进行深入的研究。
钛合金在辐照环境下发生硬化会影响循环加载下的疲劳性能。当未辐照Ti-6Al-4V和Ti-5Al-2.5Sn合金在350 ℃下进行低周疲劳测试,大约800个循环周期前后,显示出循环软化和硬

图12 Ti-6Al-4V辐照前后的疲劳性能
Fig.12 Fatigue properties of Ti-6Al-4V before and after irradiatio
Nygre

图13 800 ℃和200 MPa条件下未辐照和注入129.7 appm He的蠕变曲线
Fig.13 Creep curves of samples crept at 800 ℃ and 200 MPa: (a) non-irradiated and (b) irradiated with 129.7 appm H
钛合金在轻量化、耐腐蚀等方面有很大优势,与其它金属一样,受到中子、离子以及电子辐照会形成空位、位错环、空洞和氦泡等缺陷,甚至发生辐照诱导偏析和相变,其抗辐照性能还有待研究和提升。同时钛合金辐照效应还取决于合金成分和微观结构,并影响着钛合金的力学性能,其辐照效应对力学性能的影响仍需加强研究。要实现钛合金在核能领域的广泛应用,今后建议在以下几方面进行研究,进一步揭示钛合金的辐照损伤机制,为提高钛合金的抗辐照性能提供理论依据。
1)系统研究辐照参数对钛合金微观结构和力学性能的影响规律。虽然在宏观层面得出辐照必然导致硬化的结论,但是当改变辐照温度或其他参数时出现了相反的结果,目前没有对此反常现象进行研究。因此需要从更微观的层面对辐照缺陷与合金成分、微观结构之间相互作用规律和机制进行深入研究。
2)发展先进表征技术多尺度研究钛合金辐照效
应,以获得更精确的试验结果。特别是采用三维原子探针、同步辐射技术、正电子湮灭谱学技术和工业CT等表征技术研究钛合金在辐照条件下合金化学成分偏析、空位及空位团簇的演化规律和机制。
3)研发新型抗辐照钛合金。利用氧化物弥散强化(ODS)合金的思路,研发新型ODS钛合金,并对ODS钛合金的辐照损伤效应进行深入研究,提升钛合金的抗辐照损伤能力,更好地推动钛合金在核领域的应用。
参考文献 References
Wang Yijun(王轶君), Yu Gongming(余功铭). World Petroleum Industry(世界石油工业)[J], 2022, 29(4): 78 [百度学术]
Wang Conglin(王丛林), Chai Xiaoming(柴晓明), Yang Bo(杨 博) et al. Nuclear Power Engineering(核动力工程)[J], 2023, 44(5): 1 [百度学术]
You Han(尤 函). Defence Science & Technology Industry(国防科技工业)[J], 2006(4): 50 [百度学术]
Qiu Zhichao(邱志超), Liu Hongshuai(刘宏帅). Science & Technology Vision(科技视界)[J], 2020(9): 230 [百度学术]
Han Zhiyu(韩志宇), Xu Wei(徐 伟), Liang Shujin(梁书锦) et al. Titanium Industry Progress(钛工业进展)[J], 2015, 32(3): 7 [百度学术]
Huang H, Yuan X T, Ma L J R et al. Nuclear Engineering and Technology[J], 2023, 55(6): 2298 [百度学术]
Hoffelner W. Irradiation Damage in Nuclear Power Plants[M]. New York: Springer, 2020 [百度学术]
Ye Yongqiang(叶勇强), Han Yuanfei(韩远飞), Zhao Min(赵 敏) et al. Journal of Aeronautical Materials(航空材料学报)[J], 2022, 42(6): 9 [百度学术]
Leonov V P, Gorynin I V, Kudryavtsev A S et al. Inorganic Materials: Applied Research[J], 2015, 6(6): 580 [百度学术]
Chuvil'deev V N, Nokhrin A V, Kopylov V I et al. Journal of Materials Science[J], 2019, 54(24): 14926 [百度学术]
Kenik E A, Busby J T et al. Materials Science Engineering R: Reports[J], 2012, 73(7–8): 67 [百度学术]
Yamazaki S, Miura H, Koike H et al. Fusion Engineering and Design[J], 1994, 25(1–3): 227 [百度学术]
Zhu H L, Wei T, Carr D et al. JOM[J], 2012, 64(12): 1418 [百度学术]
Rodchenkov B S, Evseev M V, Strebkov Y S et al. Journal of Nuclear Materials[J], 2011, 417(1–3): 928 [百度学术]
Coombe J R, Shogan R P. Nuclear Applications and Technology[J], 1970, 9(3): 396 [百度学术]
Younger C, Haley F. Irradiation Effects at Cryogenic Temperature on Tensile Properties of Titanium and Titanium-Base Alloys[M]. West Conshohocken: ASTM International, 1970 [百度学术]
Wang J, Chen L, Su R et al. Journal of Rock Mechanics and Geotechnical Engineering[J], 2018, 10(3): 411 [百度学术]
Zhang Q C, Zheng M, Huang Y L et al. Corrosion Engineering, Science and Technology[J], 2017, 52(6): 425 [百度学术]
Jiang Chengyu(蒋成禹), Xu Jijin(徐济进), Yan Keng(严 铿) et al. Titanium Industry Progress(钛工业进展)[J], 2003, 20(6): 32 [百度学术]
Zhao Yongqing(赵永庆). Materials China(中国材料进 展)[J], 2010, 29(5): 1 [百度学术]
Ning Xinglong(宁兴龙). Titanium Industry Progress(钛工业进展)[J], 2003, 20(6): 28 [百度学术]
Jiang Hong(江 洪), Chen Yayang(陈亚杨). Advanced Materials Industry(新材料产业)[J], 2018(12): 11 [百度学术]
Zhao Bin(赵 彬), Zhao Yongqing(赵永庆), Luo Yuanyuan(罗媛媛) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(8): 2640 [百度学术]
Xu J P, Liu C Z, Wu J P et al. Materials Science and Engineering A[J], 2021, 819: 141508 [百度学术]
Xu J P, Liu C Z, Li H et al. Journal of Nuclear Materials[J], 2022, 568: 153873 [百度学术]
Guo Dizi(郭荻子), Wu Jinping(吴金平), Yang Fan(杨 帆) et al. China Patent(中国专利), CN109396240A[P]. 2019 [百度学术]
Zhao Bin(赵 彬). Study on Composition Design and Application of New Structural Titanium Alloy Used for Nuclear Reactor(核反应堆用新型钛合金设计及应用性能研究)[D]. Xi'an: Northwestern Polytechnical University, 2020 [百度学术]
Zhao Bin(赵 彬), Zhao Yongqing(赵永庆), Hou Zhimin(侯智敏) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(6): 1872 [百度学术]
Wu Jinping(吴金平), Yang Yingli(杨英丽), Mao Xiaonan(毛小南) et al. China Patent(中国专利), CN103506772A[P]. 2014 [百度学术]
Zháňal P, Krajňák T, Zimina M et al. Metals[J], 2022, 12(12): 2180 [百度学术]
Li H, Liu C Z, Xu J P et al. Journal of Materials Science[J], 2022, 57(43): 20521 [百度学术]
Guo X H, Li H, Wang J J et al. Nuclear Instruments and Methods in Physics Research Section B[J], 2023, 543: 165090 [百度学术]
Song M H, Furuya K, Tanabe T et al. Journal of Nuclear Materials[J], 1999, 271–272: 200 [百度学术]
Song M, Mitsuishi K, Takeguchi M et al. Journal of Nuclear Materials[J], 2002, 307(2): 971 [百度学术]
Wu Z, Zhang T B, Zhang F et al. Metals[J], 2022, 12(2): 335 [百度学术]
Whittle K R, Blackford M G, Aughterson R D et al. Acta Materialia[J], 2010, 58(13): 4362 [百度学术]
Nakata K, Fukai K, Hishinuma A et al. Journal of Nuclear Materials[J], 1997, 240(3): 221 [百度学术]
Wilkes P, Kulcinski G L. Journal of Nuclear Materials[J], 1978, 78(2): 427 [百度学术]
Doriot S, Jouanny E, Malaplate J et al. Journal of Nuclear Materials[J], 2018, 511: 264 [百度学术]
Chen J, Jung P, Nazmy M et al. Journal of Nuclear Materials[J], 2006, 352(1–3): 36 [百度学术]
Miwa Y, Sawai T, Fukai K et al. Journal of Nuclear Materials[J], 2000, 283–287(4): 273 [百度学术]
Zhu H L, Wei T, Carr D et al. Current Opinion in Solid State and Materials Science[J], 2014, 18(5): 269 [百度学术]
Pouchon M A, Chen J C, Hoffelner W. Nuclear Instruments and Methods in Physics Research Section B[J], 2009, 267(8–9): 1500 [百度学术]
Jin P, Shen T L, Li J et al. Vacuum[J], 2023, 207: 111639 [百度学术]
Ma L J R, Liu T T, Cai B et al. Physica Status Solidi (B) Basic Research[J], 2023, 260(4): 2200560 [百度学术]
Huang H, Ma L J R, Liu T C et al. Vacuum[J], 2023, 211: 111952 [百度学术]
He T, Li X, Qi Y et al. Nuclear Engineering and Technology[J], 2024, 56(4): 1480 [百度学术]
Marwick A D. Journal of Physics F: Metal Physics[J], 1978, 8(9): 1849 [百度学术]
Was G S, Busby J, Andresen P L. Effect of Irradiation on Stress-Corrosion Cracking and Corrosion in Light Water Reactors[M]. Materials Park: ASM International, 2006 [百度学术]
Ishida T, Wakai E, Hagiwara M et al. Nuclear Materials and Energy[J], 2018, 15: 169 [百度学术]
Song M, Mitsuishi K, Takeguchinms M et al. Philosophical Magazine Letters[J], 2000, 80(10): 661 [百度学术]
Zu X T, Wan F R, Zhu S et al. MRS Online Proceedings Library[J], 2003, 792(1): 17 [百度学术]
An X D, Zhang H Q, Zhu T et al. International Journal of Hydrogen Energy[J], 2022, 47(13): 8467 [百度学术]
Wang Q Q, Liu X, Zhu T et al. International Journal of Hydrogen Energy[J], 2023, 48(15): 5801 [百度学术]
Nix W D, Gao H J. Journal of the Mechanics and Physics of Solids[J], 1998, 46(3): 411 [百度学术]
Hishinuma A. Journal of Nuclear Materials[J], 1996, 239(1–3): 267 [百度学术]
Xin Y, Ju X, Qiu J et al. Fusion Engineering and Design[J], 2012, 87(5–6): 432 [百度学术]
Wei T, Zhu H L, Ionescu M et al. Journal of Nuclear Materials[J], 2015, 459: 284 [百度学术]
Makin M M, Minter F J. Journal of the Institute of Metals[J], 1957, 85: 397 [百度学术]
Lombardo J J, Dixon C E, Begley J A. Annual Meeting of the American Society for Testing and Materials[C]. Atlantic: American Society for Testing and Materials, 1967: 625 [百度学术]
Gindin I A, Lapiashvili É S, Naskidashvili I A et al. Strength of Materials[J], 1973, 5(8): 952 [百度学术]
Kayano H, Higashiguchi Y, Yajima S. Journal of Nuclear Science and Technology[J], 1977, 14(2): 117 [百度学术]
Marmy P, Leguey T. Journal of Nuclear Materials[J], 2001, 296(1–3): 155 [百度学术]
HoshiyaT, Den S, Ito H et al. Journal of the Japan Institute of Metals and Materials[J], 1991, 55(10): 1054 [百度学术]
Vainer L A, Deich A S, Kozhevnikov O A et al. Soviet Atomic Energy[J], 1990, 69(6): 1046 [百度学术]
Rodchenkov B S, Kozlov A V, Kuznetsov Y G et al. Journal of Nuclear Materials[J], 2007, 367–370: 1312 [百度学术]
Tähtinen S, Moilanen P, Singh B N et al. Journal of Nuclear Materials[J], 2002, 307–311: 416 [百度学术]
Tähtinen S, Moilanen P, Singh B N. Journal of Nuclear Materials[J], 2007, 367–370: 627 [百度学术]
Higashiguchi Y, Kayano H, Miyake M. Journal of Nuclear Materials[J], 1981, 104: 925 [百度学术]
Tebus V N, Alekseev É F, Bobkov Y V et al. Soviet Atomic Energy[J], 1982, 53(4): 690 [百度学术]
Zuo J H, Wang Z G, Han E H. Materials Science and Engineering A[J], 2010, 527(15): 3396 [百度学术]
Singh B K, Singh V. Materials Science and Engineering A[J], 2011, 528(16–17): 5336 [百度学术]
Chikhradze N. IOP Conference Series: Earth and Environmental Science[J], 2016, 44(5): 052015 [百度学术]
Duncan D R, Puigh R J, Opperman E K. Journal of Nuclear Materials[J], 1981, 104: 919 [百度学术]
Marmy P, Leguey T, Belianov I et al. Journal of Nuclear Materials[J], 2000, 283–287(4): 602 [百度学术]
Bykov P V, Gilmutdinov F Z, Kolotov A A et al. Bulletin of the Russian Academy of Sciences. Physics[J], 2004, 68(3): 508 [百度学术]
Tobe Y, Tyson W R. Scripta Metallurgica[J], 1977, 11(10): 849 [百度学术]
Pao P S, Feng C R, Gill S J. Scripta Materialia[J], 1998, 40(1): 19 [百度学术]
Yeh M S, Huang J H. Materials Science Engineering A[J], 1998, 242(1–2): 96 [百度学术]
Nygren R E. Journal of Nuclear Materials[J], 1979, 85–86: 861 [百度学术]
Hammond C, Nutting J. Metal Science[J], 1977, 11(10): 474 [百度学术]
Magnusson P, Chen J C, Hoffelner W. Journal of Nuclear Materials[J], 2011, 416(1): 60 [百度学术]
Jung P, Ansari M I. Journal of Nuclear Materials[J], 1986, 138(1): 40 [百度学术]
Schilling W, Ullmaier H. Materials Science and Technology[J], 2006, 22(4): 636 [百度学术]
Reis A G, Reis D A P, de Moura-Neto M. Journal of Materials Research and Technology[J], 2013, 2(1): 48 [百度学术]
Magnusson P, Chen J C, Hoffelner W. Metallurgical and Materials Transactions A[J], 2009, 40(12): 2837 [百度学术]