Tm³⁺/Ho³⁺共掺碲酸盐玻璃 2.0 μm 发光性质研究

印 冰,杨中民,杨钢锋,姜中宏

(华南理工大学 特种功能材料及其制备新技术教育部重点实验室, 广东 广州 510640)

摘 要: 研究了 Tm^{3+}/Ho^{3+} 离子共掺碲酸盐玻璃的光谱性质,应用 Judd-Ofelt 理论计算了玻璃的各项光谱参数,推导了速率方程。表明 ${}^{3}H_{4} \rightarrow {}^{3}F_{4}$ 自发辐射跃迁几率很小,这一跃迁发射为一自终止系统。 Tm^{3+} 离子 ${}^{3}F_{4}$ 上粒子数主要来源于 ${}^{3}H_{4} + {}^{3}H_{6} \rightarrow 2^{3}F_{4}$ 的交叉弛豫过程。玻璃的荧光光谱表明,随着 $Ho_{2}O_{3}$ 浓度的增加, Tm^{3+} 离子 ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ 跃迁的 $1.8~\mu m$ 发光强度降低,而 Ho^{3+} 离子 ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ 跃迁的 $2.0~\mu m$ 发光强度迅速升高,说明 $Ho_{2}O_{3}$ 浓度的增加, Tm^{3+} 离子和 Ho^{3+} 离子间的能量转移作用逐渐加强。

关键词: 碲酸盐玻璃; Tm3+/Ho3+离子; 交叉弛豫; 能量转移

中图法分类号: TQ171+12

文献标识码: A

文章编号: 1002-185X(2008)06-1016-03

Tm3+、Ho3+离子共掺是实现 2.0 um 发光的有效途 径, 2.0 μm 激光在医疗中有重要的应用^[1]。在 800 nm LD 泵浦源直接激发下, Ho3+离子不能直接被激发而获 得 2.0 μm 的发光。而 Tm³⁺/Ho³⁺离子共掺,通过 Tm³⁺ 离子 3F4 能级对 Ho3+离子 5I7 能级的能量转移, 敏化 Ho³⁺离子而得到 2.0 μm 的发光^[2]。碲酸盐玻璃具有许 多优良的性质, 如有较宽的红外透过范围(直到 6 μm), 较低的声子能量(约 750 cm⁻¹), 高的折射率(2.0 以上)[3]。而且,碲酸盐玻璃有较低的熔制温度及较高 的稀土溶解能力,是适合Tm3+、Ho3+离子掺杂的良好 基质材料[4]。由于 Tm3+、Ho3+离子在硅酸盐、磷酸盐 玻璃中很难发光,对 Tm3+/Ho3+离子共掺 2 μm 发光的 报道也多集中在氟化物玻璃[5,6]以及硅酸盐玻璃光纤 中[7~9]。因此将碲酸盐玻璃的优良性质及 Tm3+、Ho3+ 离子 2.0 μm 的发光性质结合起来, 研究新型激光材料 具有重要意义。本工作研究了组成为 70TeO2-15ZnO-10Nb₂O₅-5SrO (mol%) 玻璃中 Tm³⁺/Ho³⁺离子共掺发 光特性。探讨了不同Ho3+离子浓度对发光强度的影响。

1 玻璃样品的制备与性能测试

稀土掺杂的碲酸盐玻璃组成(mol%)为: $70TeO_2$ -15ZnO-10 Nb_2O_5 -5SrO-0.5 Tm_2O_3 - xHo_2O_3 (x=0、0.01、0.02、0.05、0.1、0.2)及 $70TeO_2$ -15ZnO-10 Nb_2O_5 -5SrO-0.2 Ho_2O_3 。称取 10 g 配合料,充分混合均匀后置于铂坩埚中,于 850 ℃下熔制 20 min,待玻璃液澄清后浇注于预热的不锈钢模上,成型后送入马弗炉中退火。

退火后的玻璃样品加工成 10 mm×15 mm×2 mm 试样,两大面抛光后进行测试。

玻璃的吸收光谱测定采用 PERKIN-ELMER-LAMBDA 900UV/VIS/NIR 型分光光度计,测量范围为 350~2300 nm,分辨率为 1 nm。荧光光谱采用法国 J-Y 公司生产的 Triax 320 型荧光光谱仪测量,用 2 W中心波长 800 nm 的 LD 作为抽运源,用 PbSe 作探测仪,信号经锁相放大器放大后记录。所有样品的测试条件保持一致,均在室温条件下测得。

2 结果与讨论

图 1 为碲酸盐玻璃中 Tm^{3+} 离子、 Ho^{3+} 离子单掺及 Tm^{3+}/Ho^{3+} 离子共掺的吸收光谱, Tm^{3+} 、 Ho^{3+} 离子对应 吸收峰如图中标识。Judd-Ofelt 理论 $[10\sim12]$ 常用来计算 稀土离子在不同玻璃基质中的光谱参数如强度参数 Ω_t (t=2, 4, 6),自发辐射跃迁几率,荧光分支比 和辐射寿命等。表 1 列出了单掺 0.5 mol% Tm_2O_3 时计 算得到的 Tm^{3+} 离子一系列光谱参数。可知 Tm^{3+} 离子的 $^3H_4\rightarrow ^3H_5$ 、 3F_4 、 3H_6 跃迁的荧光分之比分别为 0.47%、1.91%、91.03%,可看出 $^3H_4\rightarrow ^3F_4$ 辐射跃迁的荧光分支比与 $^3H_4\rightarrow ^3H_6$ 辐射跃迁相差 1 个数量级, $^3H_4\rightarrow ^3F_4$ 自发辐射跃迁几率很小,这一跃迁发射为一自终止系统,表明产生 $^3F_4\rightarrow ^3F_6$ 跃迁时, 3H_4 能级上的粒子还有其它来源。

稀土离子发光强度 I 与发光能级上布居的粒子数成正比关系。粒子数越多,则发光强度越大。设 Tm^{3+}

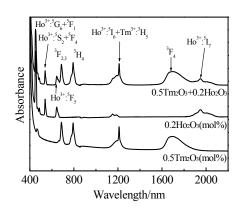


图 1 碲酸盐玻璃 Tm3+/Ho3+共掺吸收光谱

Fig.1 Absorption spectra of Tm³⁺/Ho³⁺ co-doped tellurite glass

离子 ${}^{3}H_{4}$ 能级粒子数为 N_{2} , ${}^{3}F_{4}$ 能级粒子数为 N_{1} , 基态 ${}^{3}H_{6}$ 能级粒子数为 N_{0} , 则速率方程表示为:

$$\frac{dN_2}{dt} = P\sigma_0 N_0 - \frac{N_2}{\tau} - CN_0 N_2 \tag{1}$$

$$\frac{dN_1}{dt} = \beta \frac{N_2}{\tau} + 2CN_0N_2 - AN_1$$
 (2)

$$N_0 + N_1 + N_2 = N \tag{3}$$

式中,P 是光子流密度, σ_0 是从基态 3H_6 到 3H_4 的吸收 截面, τ 是 3H_4 能级的寿命,C 是交叉驰豫系数,A 是 3F_4 能级的自发辐射几率,N 为总的粒子数。交叉弛豫 过程不仅与离子浓度有关,还跟泵浦功率有关。

在稳态时,
$$\frac{dN_2}{dt} = \frac{dN_1}{dt} = 0$$
 ,则有:

$$P\sigma_0 N_0 = \frac{N_2}{\tau} + CN_0 N_2 \tag{4}$$

$$\beta \frac{N_2}{\tau} + 2CN_0 N_2 = AN_1 \tag{5}$$

表 1 掺 Tm^{3+} 碲酸盐玻璃的自发辐射几率 A 和跃迁分支比 $oldsymbol{eta}$

Table 1 Spontaneous radiation transition rates A and fluorescent branch ratio β of Tm³⁺ in tellurite glass

Initial level→End level	Average energy/cm ⁻¹	A/s^{-1}	β	$\Omega_{\rm t}(t=2, 4, 6) \text{ by J-O/} \times 10^{-20} \cdot \text{cm}^{-2}$
$^{3}\text{F}_{4} \rightarrow ^{3}\text{H}_{6}$	5 912.61	6.36	1	
$^{3}\mathrm{H}_{5} \rightarrow ^{3}\mathrm{H}_{6}$	8 267.19	7.55	0.992 8	
\rightarrow ³ F ₄	2 354.58	0.05	0.002 4	Ω_2 =4.72
$^{3}\mathrm{H}_{4}$ \rightarrow $^{3}\mathrm{H}_{6}$	12 692.77	31.96	0.910 3	
\rightarrow ³ F ₄	6 717.16	2.53	0.019 1	$Q_4 = 0.84$
\rightarrow ³ H ₅	4 362.58	0.62	0.004 7	
${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}$	14 835.04	31.765	0.6102 5	$\Omega_6 = 1.29$
\rightarrow ³ F ₄	8 922.425	10.37	0.0591 5	
\rightarrow ³ H ₅	6 567.845	6.925	0.036 3	
\rightarrow ³ H ₄	2 205.265	0.245	0.001 4	

当 Tm^{3+} 离子之间不发生交叉弛豫 $^{[13]}$,或者离子浓度很小而交叉驰豫几率较低时, $c\approx0$ 可以忽略不计。

$$N_2 = \tau \sigma_0 N_0 P \tag{6}$$

$$AN_1 = \beta \frac{N_2}{\tau} = \beta \sigma_0 N_0 P \tag{7}$$

可以得到: $I \propto AN_1 \propto P$,即产生单光子吸收下转换过程,发光强度与泵浦功率之间是线性关系。当 Tm^{3+} 离子浓度较大时,即 C>0。在较低功率泵浦情况下: $N\approx N_0>>N_2>>N_1$,由方程(4)和(5)可得: $AN_1 \propto P$,随着泵浦功率的增大, 3H_4 能级上的粒子数逐渐增多。高功率泵浦下,只有当 $N_0=N_2$ 时, N_0 与 N_2 乘积即交叉 弛豫取得极大值,代入方程(4)(5)得到极值情况下 粒子数与泵浦功率之间的关系:

$$I \propto AN_1 \propto P^2$$
 (8)

因此,当 Tm³+离子之间发生交叉弛豫时,稳态下发光强度与泵浦功率之间的关系满足指数形式,指数介于 1~2 之间。单掺碲酸盐玻璃 1.8 μm 发光强度随泵浦功率变化的趋势见图 2 中小图(log*I*~log*P* 关系)。

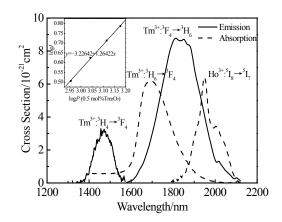


图 2 Tm³⁺/Ho³⁺共掺的吸收发射截面

Fig.2 Cross sections of the emission and the absorption in 0.2Ho₂O₃ and 0.5Tm₂O₃ co-doped sample

当发生交叉弛豫过程,拟合线性方程斜率 k 将满足 1 < k < 2。图 2 中线性方程为 y = -3.226 42 + 1.264 22x,斜率为 1.26,表明 Tm^{3+} 离子之间产生了交叉驰豫过程, $^{3}F_{4}$ 能级上的粒子数较多的来源于交叉驰豫过程。

图 2 中 Tm^{3+} : ${}^3F_4 \rightarrow {}^3H_6$ 的发射截面和 Ho^{3+} : ${}^5I_8 \rightarrow {}^5I_7$ 吸收截面之间发生重叠,表明 Tm^{3+} 离子和 Ho^{3+} 离子之间产生了有效的能量转移过程。 Tm^{3+} : ${}^3H_4 \rightarrow {}^3H_4$ 的发射截面与 ${}^3H_6 \rightarrow {}^3H_4$ 的吸收截面之间发生重叠,也证明了 Tm^{3+} 离子之间交叉驰援的产生。图 3 所示为不同 Ho_2O_3 浓度下共掺碲酸盐玻璃的荧光光谱。

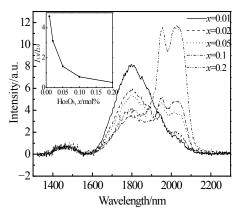


图 3 Tm3+/Ho3+共掺碲酸盐玻璃发射光谱

Fig.3 Emission spectra of the Tm³⁺/Ho³⁺ co-doped tellurite glass for 70TeO₂-15ZnO-10Nb₂O₅-5SrO-0.5Tm₂O₃-xHo₂O₃

随着 Ho_2O_3 浓度的增加, $1.8~\mu m$ 的发射强度降低,而 $Ho^{3+}: {}^5I_7 \rightarrow {}^5I_8$ 在 $2.0~\mu m$ 处的发射强度迅速升高。表明,随着 Ho_2O_3 浓度的增加, Tm^{3+} 离子和 Ho^{3+} 离子之间的能量转移作用加强。因此 Tm^{3+} 离子 ${}^3F_4 \rightarrow {}^3H_6$ 的跃迁发光强度减弱,而 Ho^{3+} 离子 ${}^5I_7 \rightarrow {}^5I_8$ 的跃迁发光强度逐渐增强。当 Tm^{3+} 离子向 Ho^{3+} 离子进行能量转移时,可以把这 2~种离子看作 1~种耦合系统。 此时 Tm^{3+}/Ho^{3+} 共掺时的激发并非平衡状态,离子间的能量传递是依靠"近场作用"下的共振传递。随 Ho_2O_3 浓

度不同时 2 个波段发光强度的比值 $I_{1.8}/I_{2.0}$ 变化见图 3 中小图。随着 Ho_2O_3 浓度的增加,2.0 μ m 的发光增强,而 1.8 μ m 的发光减弱,且二者的比值 $I_{1.8}/I_{2.0}$ 是逐渐减小的,说明 Tm^{3+} 离子向 Ho^{3+} 离子的能量转移效率逐渐提高。 Ho^{3+} 离子在 2.0 μ m 附近较强的发射,说明了这种能量转移十分有效。

3 结 论

 Tm^{3+} 离子 ${}^{3}F_{4}$ 上粒子数来源于交叉弛豫过程; Tm^{3+} / Ho^{3+} 离子共掺情况下,存在 Tm^{3+} : ${}^{3}F_{4}$ \rightarrow Ho^{3+} : ${}^{5}I_{7}$ 之间的能量转移; 随 Ho^{3+} 离子浓度的增加,使 Tm^{3+} 和 Ho^{3+} 离子之间的能量转移作用加强,使 ${}^{3}F_{4}$ 到 ${}^{3}H_{6}$ 的发光强度减弱,而 ${}^{5}I_{7}$ 到 ${}^{5}I_{8}$ 的跃迁发光强度增强; Tm^{3+} 到 Ho^{3+} 的能量转移比率随 $Ho_{2}O_{3}$ 浓度的增加而增加。

参考文献 References

- [1] Moulton P F. Laser Focus World [J], 1992, 28: 65
- [2] Zou X, Toratani H. J Non-Cryst Solids[J], 1996, 195(1): 113
- [3] da Vila L D et al. Opt Mater[J], 2005, 27: 1333
- [4] Huang L et al. J Non-Cryst Solids[J], 2004, 345/346: 349
- [5] Doshida M, Obara M. Jpn J Appl Phys[J], 1995, 34: 6079
- [6] Jackson S D. Electron Lett [J], 2000, 37(13): 819
- [7] Clarkson W A et al. Opt Lett[J], 2002, 27(22): 1989
- [8] El-Sherif A F, King T A. Opt Lett [J], 2003, 28(1): 22
- [9] Tsang Y H et al. Opt Commun[J], 2004, 231: 357
- [10] Judd B R. Phys Rev[J],1962, 127: 750
- [11] Ofelt G S. J Chem Phys[J], 1962, 37: 511
- [12] Tanabe S et al. Phy Rev B[J], 1993, 47(5): 2507
- [13] Allain J Y et al. Electron Lett[J], 1991, 27: 1513

2.0 µm Fluorescence Spectra of Tellurite Glasses Co-Doped with Tm-Ho

Yin Bing, Yang Zhongmin, Yang Gangfeng, Jiang Zhonghong (Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology, Ministry of Education, South China University of Technology, Guangzhou 510640, China)

Abstract: The spectroscopic characteristics of Tm^{3+}/Ho^{3+} co-doped tellurite glasses have been investigated. The spectroscopy parameters are calculated by using the Judd-Ofelt theory. The rate equations and the intensity relation of 1.8 μ m emission with the pump power prove that the particle number in 3F_4 comes from the cross-relaxation process of ${}^3H_4+{}^3H_6\rightarrow 2{}^3F_4$. The emission spectra of Tm^{3+} -Ho³⁺ co-doped glasses show that with increasing the Ho₂O₃ concentration, the intensity of 1.8 μ m emission decreases, while 2.0 μ m emission intensities increases. The ion energy transfer from Tm^{3+} to Ho³⁺ becomes stronger with the increase of Ho₂O₃ concentration.

Key words: tellurite glass; Tm³⁺/Ho³⁺ co-doped; cross-relaxation; energy transfer