$\mathbf{Mg}_{m}\mathbf{B}_{n}$ 团簇层状结构的密度泛函理论研究

陈玉红,康 龙,罗永春,张材荣,武志敏

(兰州理工大学 甘肃省有色金属新材料省部共建国家重点实验室,甘肃 兰州 730050)

摘 要: 用密度泛函理论 (DFT) 中的杂化密度泛函 B3LYP 方法,在 6-31G*水平上对 Mg_2B_6 、 Mg_4B_{10} 、 Mg_6B_{13} 和 Mg_8B_{16} 团簇的层状结构进行了几何结构优化,并在同一水平上计算了其电子结构、振动特性和成键特性。结果表明: 团簇中 Mg_2B 键长在 $0.225\sim0.235$ nm,B-B 键长在 $0.154\sim0.191$ nm;Mg 原子的自然电荷在+ $1.24\sim+1.45$ e 之间,B 原子的自然电荷在- $0.29\sim-1.10$ e 之间; Mg_4B_{10} 团簇有相对较高的动力学稳定性。

关键词: MgmBn 团簇;密度泛函理论;结构与性质;超导电性

中图法分类号: O561.1; O641

文献标识码: A

文章编号: 1002-185X(2009)01-0115-05

团簇的性质既不同于块体材料,又不同于其组成 单体, 具有明显的尺寸依赖性。闭簇结构与性质的研 究对于理解物质从微观到宏观的过渡具有重要作 用[1],由于其特殊的物理化学性质,团簇研究已引起 物理、化学和材料等领域的广泛兴趣[1~3]。2001年 1 月,东京 Aoyama Gakum 大学的 Jun 教授宣布了 MgB2 的高温超导电性能,并在著名的学术刊物《自然》杂 志上报道了这一发现^[4]。MgB₂具有简单化学组成和晶 格结构, 而超导转变温度 T_c 达到 39 K, 一时引起物理 界普遍的关注和兴趣,并成为超导研究新的热点。几 年以来,世界各国的研究人员使用各种现代化的研究 手段,对 MgB。超导体的物理性质进行了实验和理论 研究[5~14]。目前,对 MgB2 团簇的研究工作主要集中 在分子和小团簇方面, Yang 等[15]分别采用 QCISD/6-311G*和 CCSD(T)/cc-pVTZ 2 种方法对 MgB, 分子的稳定结构和振动特性进行了研究。文献 [16] 运用密度泛函理论的 B3LYP/6-31G*方法对 $Mg_mB_n(m=1, 2; n=1~4)$ 团簇的几何结构、振动特行与 电荷特性等进行了研究。Tzeli等[17]研究了 MgB2分子 的 36 个状态的几何结构、原子化能和偶极矩等。 Masao^[18]用 DV-Xa 方法研究了 MgB₂ 的电子结构,认 为在 Mg 和 B 之间发生了电荷转移, B 的负电荷为 -0.39e, MgB₂ 是简单的离子型结构 Mg²⁺B₂-。Dasari 等^[19]用 DFT 方法研究了 Mg₃₆B₆₀、Mg₃₀B₆₀、Mg₃₂B₆₀ 笼状结构和 MgB₂ 纳米管结构,指出 MgB₂ 纳米管键 结构具金属性。MgB2的晶体为层状结构,对其层状结 构团簇的研究对于理解其局域成键特性,以及从微观

到宏观的过渡具有重要作用,而这方面的研究未见报道。为此,本研究从 MgB_2 的晶体结构出发,用密度泛函理论的 B3LYP/6-31G*方法对 Mg_mB_n 团簇的层状结构与性质进行了探讨。

1 研究方法

MgB₂ 的晶体结构为 AlB₂ 型六方结构^[4,20],即由石墨蜂窝型结构的 B 原子层间插入六角密集排列的 Mg 原子层构成,空间群为 P6/mmm。由于本工作的目的在于模拟 MgB₂ 的层状结构,而不是搜索团簇势能面得到全局最稳定结构,所以设计了 Mg₂B₆、Mg₄B₁₀、Mg₆B₁₃ 和 Mg₈B₁₆ 团簇的层状初始结构。综合考虑算量和精度,采用密度泛函理论中的杂化密度泛函B3LYP/6-31G*方法,在甘肃超算中心曙光天潮TC4000L 集群系统上,用 Gaussian 98 程序对团簇的结构进行了优化。同时对优化后结构的振动特性、成键特性和电荷特性等进行了计算。

2 结果与讨论

2.1 几何结构

优化后的 Mg_2B_6 、 Mg_4B_{10} 、 Mg_6B_{13} 和 Mg_8B_{16} 团簇层状结构分别如图1所示,图中同时还给出了团簇的结合能(E_T)。优化后的 Mg_mB_n 团簇层状结构都包括2个Mg原子层和1个B原子层,B原子层为六元环结构。频率分析表明,计算得到的 Mg_2B_6 、 Mg_4B_{10} 和 Mg_6B_{13} 团簇振动频率均为正值,表明各团簇结构均为势能面上的极小点;而 Mg_8B_{16} 团簇存在虚频,故其不是势能面上

收稿日期: 2008-03-19

基金项目: 国家自然科学基金(10547007,10647006)、甘肃省有色金属新材料省部共建国家重点实验室开放基金(SKL05008)、甘肃省自然科学基金(3ZS062-B25-022)和兰州理工大学优秀青年教师培养资助计划(Q200317)资助项目

作者简介: 陈玉红, 男, 1972 年生, 博士生, 副教授, 兰州理工大学, 甘肃 兰州 730050, 电话: 0931-2973783, E-mail:chenyh@lut.cn

的极小点,本工作不对其进行讨论,其余构型的几何 参数列于表1。计算结果表明,团簇层间Mg-B键长在 $0.225\sim0.235$ nm之间,层内B-B键长在 $0.154\sim0.191$ nm 之间,Mg-Mg键长在 $0.297\sim0.299$ nm。这与文献[16] 给出的MgB2小团簇中B-B键键长 $0.153\sim0.182$ nm、B-Mg键键长 $0.221\sim0.231$ nm,及文献[19] 用DFT方法研究得到的Mg36B60、Mg30B60和Mg32B60笼状结构中B-B 键 键长 $0.1567\sim0.1808$ nm 、B-Mg 键 键长

0.2239~0.2364 nm完全相符;与实验结构分析^[20]得出的晶体中B-B原子间距0.1782 nm相符,但比B-Mg原子间距0.2506 nm略小。计算给出团簇中B-Mg-B键角约为76.6°~85.0°, Mg-B-Mg键角约为99.8°~102.8°, B-B-B键角约为100.8°~140.2°。与晶体^[20]B-Mg-B、Mg-B-Mg键角约90°,B-B-B键角120°比较,团簇中B-Mg-B键角减小、Mg-B-Mg键角增大,这是由于团簇B-Mg键长比晶体中原子间距小,即团簇表面效应作用的结果。

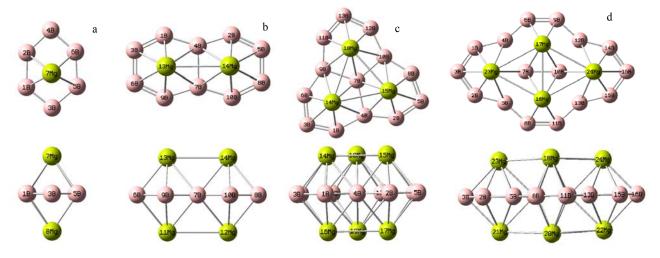


图 1 Mg_mB_n 团簇优化后的层状结构

Fig. 1 The tier-like structure of optimized Mg_mB_n clusters: (a)-14939.058 eV, (b)-28534.158 eV (c)-41453.136 eV, and (d)-54369.958 eV

表 1 Mg_mB_n 团簇优化后的几何参数和自然电荷

Table 1 Geometrical parameters and natural charge of optimized Mg_mB_n clusters

Cluster	Symmetry C _{2v}	Multiplicity 1	Bond length/nm		Bond angle/(°)		Natural charge/e	
Mg_2B_6			R(1,2)	0.162	A(2,1,3)	127.7	Mg	1.45
			R(1,3)	0.156	A(1,3,5)	100.8	1B	-0.53
			R(1,7)	0.225	A(1,7,6)	76.6	3B	-0.43
			R(2,7)	0.235	A(7,6,8)	99.8	4B	-0.31
Mg_4B_{10}	D_{2h}	1	R(1,3),R(3,6)	0.155	A(3,1,4)	137.3	Mg	1.24
			R(1,4)	0.166	A(11,1,13)	102.8	1B	-0.33
			R(1,11)	0.232	A(1,3,6)	115.6	3B	-0.44
			R(4,7)	0.191	A(1,4,2)	145.8	4B	-0.95
			R(13,14)	0.299	A(1,11,9)	77.0		
Mg_6B_{13}	C_{3h}	2	R(1,3)	0.154	A(3,1,4)	140.2	Mg	1.25
			R(1,4)	0.165	A(1,3,6)	106.3	1B	-0.29
			R(4,7)	0.186	A(1,4,2)	146.7	3B	-0.49
			R(1,14)	0.231	A(1,14,9)	85.0	4B	-1.08
			R(14,15)	0.297	A(14,1,16)	100.2	7B	-1.10

电荷布居是理解成键性质的关键。用自然键轨道(Natural Bond Orbital,NBO)方法在B3LYP/ 6-31G*水平上分析了 Mg_mB_n 团簇层状结构的电荷布居特性和

成键性质。NBO分析给出各原子的自然电荷列于表1。可以看出,在Mg和B相互作用形成团簇的过程中,发生原子间的电荷转移,这种电荷转移的作用使得团簇

中B原子呈负电性, Mg原子显正电性; Mg原子的自然 电荷在1.24~1.45e之间, B原子的自然电荷在 -0.29~-1.10e之间。进一步分析发现,靠近团簇中心的 B原子自然电荷布局数较大,形成一个负电中心,这 与文献[16]给出的结果相同。Mg₈B₁₆团簇中心的7B、 10B原子的自然电荷为-1.26e,靠近中心的4B、5B、 12B、13B原子的自然电荷为-0.87e,形成一个很强的 负电中心,从而使中心原子之间存在很强的静电斥力, 所以Mg₈B₁₆团簇不能形成稳定的层状结构。对分子轨 道的分析有助于理解成键性质,图2给出了Mg2B6、 Mg_4B_{10} 和 Mg_6B_{13} 团簇层状结构的部分分子轨道图。分 析表明,团簇中B原子主要是sp杂化轨道参与成键, Mg原子主要是s轨道参与成键。层内Mg原子之间主要 是s轨道形成的 σ 键,B原子之间主要是sp杂化轨道形成 的π键。层间作用主要是B原子sp杂化轨道与Mg原子的 s轨道形成的 σ 键。另外,团簇B原子之间都包含sp杂化 轨道形成的离域大 π 键,如 Mg_2B_6 团簇的HOMO-3轨道、 Mg₄B₁₀团簇的HOMO-5轨道和Mg₆B₁₃团簇的HOMO-3 轨道。B原子层聚集了大量的电子(平均自然电荷布 局为-0.53e),同时B原子之间存在的离域大π键,这些 为MgB2的超导特性提供了可能。

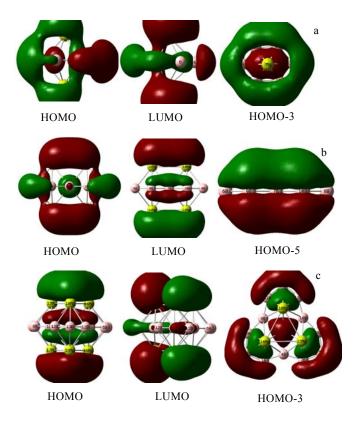


图 2 Mg_mB_n 团簇的部分分子轨道图 Fig. 2 partial molecular orbitals for the Mg_mB_n clusters: (a) Mg_2B_6 , (b) Mg_4B_{10} , and (c) Mg_6B_{13}

2.2 IR和Raman谱

用B3LYP/6-31G*方法,在结构优化的基础上计算了Mg2B6、Mg4B10和Mg6B13团簇层状结构的IR和Raman谱(如图3所示)。计算结果表明:Mg2B6团簇总共有18个振动模式,IR的最强吸收峰位于1061.25 cm⁻¹,其振动模式是3B-1B、3B-5B和4B-2B、4B-6B键的伸缩振动,Raman谱的最强峰位于295.26 cm⁻¹,其振动模式是B-Mg键的伸缩振动。Mg4B10团簇总共有36个振动模式,IR的最强吸收峰位于150.17 cm⁻¹,其振动模式是B原子面的弯曲振动,Raman谱的最强峰位于226.38 cm⁻¹,其振动模式是Mg-Mg键的伸缩振动。Mg6B13团簇总共有51个振动模式,IR的最强吸收峰位于1215.17 cm⁻¹,其振动模式是2个B-B键伸缩振动的简并,Raman谱的最强峰位于1162.81 cm⁻¹,其振动模式也是B-B键的伸缩振动。

2.3 动力学稳定性

动力学稳定性是描述体系的激发、反应等与电子有关的动力学行为的物理量,主要取决于与电子结构有关的量,如团簇的电离势(VIE)、能隙(E_g)、总束缚能(E_{BT})、平均束缚能(E_{av})和费米能级(E_F)等。用B3LYP方法在6-31G*水平上对Mg_mB_n团簇的VIE、 E_g 、 E_{BT} 、 E_F 和 E_a ,进行了计算。所采用的计算公式为:

$$VIE = E_{M_{R_{c},B_{c}}} - E_{M_{r_{c},B_{c}}}$$
 (1)

$$E_g = E(HOMO) - E(LUMO) \tag{2}$$

其中 $E_{Mg_mB_n}$ 为 Mg_mB_n 团簇的结合能, $E_{Mg_mB_n}$ 为团簇同一构型阳离子 Mg_mB_n 的结合能;E(HOMO) 为最高占据轨道的能量,E(LUMO) 为最低未占据轨道的能量。 E_F 定义为最高占据轨道的能量。 E_{BT} 为团簇总能量与团簇中全部原子能量和之差。 Mg_mB_n 团簇的VIE、 E_g 、 E_{BT} 、 E_{av} 和 E_F 的数值见表2。由表2可以看出,团簇的 E_F 、 E_g 和VIE 随团簇尺寸变化显示出很好的相关性, Mg_4B_{10} 团簇存在较小的费米能、较大的电离势和能隙,具有相对较高的动力学稳定性。

表 2 Mg_mB_n 团簇的VIE、 E_g 、 E_{BT} 、 E_{av} 和 E_F Table 2 VIE, E_g , E_{BT} , E_{av} and E_F of Mg_mB_n clusters (eV)

Cluster	VIE	$E_{ m g}$	$E_{ m BT}$	E_{av}	$E_{ m F}$
Mg_2B_6	5.316	0.961	25.123	3.140	-4.308
Mg_4B_{10}	6.236	1.762	48.026	3.430	-4.822
Mg_6B_{13}	6.170	1.205	65.676	3.457	-4.800

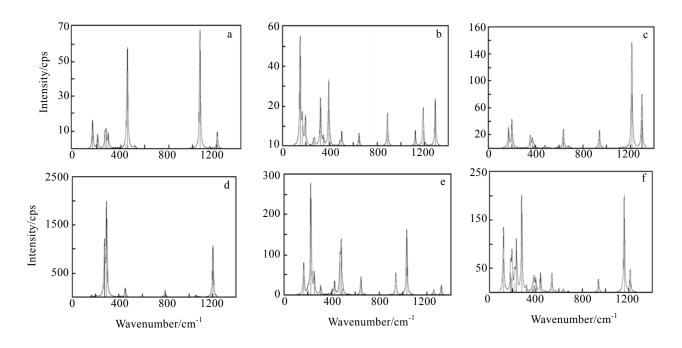


图 3 MgmBn团簇层状结构的IR和Raman谱

Fig. 3 The IR (a, b, c) and Raman (d, e, f) spectra of tier-like structure of Mg_mB_n clusters: (a, d) Mg₂B₆, (b, e) Mg₄B₁₀, and (c, f) Mg₆B₁₃

3 结 论

- 1) 优化后的 Mg_mB_n 团簇层状结构都包括2个Mg原子层和1个B原子层,B原子层为六元环结构。层间Mg-B键长在0.225~0.235 nm之间,层内B-B键长在0.154~0.191 nm之间,Mg-Mg键长在0.297~0.299 nm之间。
- 2) 团簇中Mg原子的自然电荷在+1.24~+1.45e之间,B原子的自然电荷在-0.29~1.10e之间,而且靠近团簇中心的B原子自然电荷布局数较大,形成一个负电中心。B原子主要是sp杂化轨道参与成键,Mg原子主要是s轨道参与成键。
 - 3) Mg₄B₁₀团簇有相对较高的动力学稳定性。
- 致 谢:感谢甘肃省超级计算中心提供计算条件。

参考文献 References

- [1] Wang Ganghou(王广厚). *Progress in Physics*(物理学进展)[J], 1994, 14: 121
- [2] Wang Ganghou(王广厚). Progress in Physics(物理学进展)[J], 2000, 20: 251
- [3] Sarah D, Thomas V, Mortimer J et al. J Chem Phys[J], 2002, 116: 1536
- [4] Jun N, Norimasa N. Nature[J], 2001, 410: 63
- [5] Islam A K M A, Islam F N, Kabir S. J Phys Condens Matter[J], 2001, 13: L641

- [6] Gaitonde D M, Modak P, Rao R S et al. Bull Mater Sci[J], 2003, 26: 137
- [7] Uchiyama H, Shen K M, Lee S et al. Phys Rev Lett[J], 2002, 88: 157002/1
- [8] Modak P, Rao R S, Godwal B K et al. Pramana J Phys[J], 2002 58: 881
- [9] Cui C X, Lui D B, Shen Y T et al. Acta Mater[J], 2004, 52: 5757
- [10] Pablo D L M, Miguel C, Gustavo T. *Journal of Solid State Chemistry*[J], 2002, 169: 168
- [11] Tajima S, Masui T, Uchiyama H et al. Current Applied Physics[J], 2002, 2: 315
- [12] Xu M, Xiao Z, Wang Z. Surface Science[J], 2003, 541: 14
- [13] Yan Shicheng(闫世成), Yan Guo(闫 果), Lu Yafeng(卢亚锋) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2006, 35(12): 1892
- [14] Han Huanqing(韩欢庆), Lu Huimin(卢惠民), Qiu Dingfan (邱定蕃). Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2006, 35 (10): 1602
- [15] Yang C L, Zhang X, Han K L. Journal of Molecular Structure (Theochem)[J], 2004, 677: 11
- [16] Chen Yuhong(陈玉红), Zhang Cairong(张材荣), Ma Jun(马军). *Acta Phys Sin*(金属学报)[J], 2005, 54: 166
- [17] Tzeli D, Mavridis A. Journal of Physical Chemistry A[J], 2005, 109(47): 10663

[18] Masao N, Physica C[J], 2003, (388~389): 137

Structure (Theochem)[J], 2006, 771: 111

[19] Dasari L V K P, Eluvathingal D J. Journal of Molecular

[20] Islam A K M A, Islam F N. Phys C[J], 2001, 363: 189

Density Functional Theory of Tier-Like Structure of Mg_mB_n Clusters

Chen Yuhong, Kang Long, Luo Yongchun, Zhang Cairong, Wu Zhimin (State Key Laboratory of Gansu Advanced Non-Ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract: The equilibrium geometries, the electronic structures, the vibration properties and the bond properties of the tier-like structures of Mg_2B_6 , Mg_4B_{10} , Mg_6B_{13} and Mg_8B_{16} clusters have been studied by the hybrid density functional B3LYP on the 6-31G* level. The calculated results show that the bond lengths are about $0.225\sim0.235$ nm for Mg-B and $0.154\sim0.191$ nm for B-B; the natural charge of B atoms is about $-0.29\sim-1.10$ e by population analysis and about $+1.24\sim+1.45$ e for Mg atoms; and the dynamic stabilities of Mg_4B_{10} clusters are higher than that of other clusters.

Key words: Mg_mB_n clusters; density functional theory; structure and property; superconductivity

Biography: Chen Yuhong, Candidate for Ph. D., Associate Professor, Department of Physics, Lanzhou University of Technology, Lanzhou 730050, P. R. China, Tel: 0086-931-2973783, E-mail: chenyh@lut.cn