Ni-Fe-Ga-Co 磁性记忆合金微观组织与力学行为

高智勇¹,隋解和¹,李 民²,余彗茹¹,蔡 伟¹

(1. 哈尔滨工业大学,黑龙江 哈尔滨 150001)(2. 驻沈阳黎明航空发动机(集团)有限责任公司军代表室,辽宁 沈阳 110043)

摘 要:系统研究 Ni-Fe-Ga-Co 磁性形状记忆合金的显微组织结构以及力学行为,阐明掺 Co 对 NiFeGa 合金中 y 相析 出的影响规律,探明 y 相增韧的微观机制。结果表明,铸态 Ni-Fe-Ga-Co 合金室温组织由马氏体和 y 相两相组成, y 相 数量随 Co 含量增加而增多。Fe 和 Co 原子在马氏体相中存在最大饱和浓度,当二者含量之和超过 16 at%时,剩余的 Fe 和 Co 原子以 y 相形式析出。y 相为富 Fe 和 Co 而贫 Ga 相,且 Fe 和 Co 原子的最大饱和浓度约为 23 at%。合金的屈 服强度和断裂强度随 Co 含量增多呈增大趋势。断口观察发现,基体相为解理断裂,小尺寸的 y 相被裂纹绕过或被整体 拔出,大尺寸的 y 相被拉长、撕裂或整体拔出,说明 y 相有利于改善合金韧性,但增韧效果受到 y 相尺寸的影响。

关键词: Ni-Fe-Ga-Co 合金; 磁性形状记忆合金; 微观组织; 力学性能

中图法分类号: TG 139 ⁺ .6 文	て献标识码:A	文章编号:	1002-185X(2009)02-0323-04
----------------------------------	---------	-------	---------------------------

铁磁形状记忆合金由于兼具大磁感生应变和高响 应频率已成为智能材料研究领域的热点之一。自从 1996 年 K.Ullakko 等人^[1]在化学计量比 Ni₂MnGa 单晶 中获得 0.2%的可恢复应变,以 Ni-Mn-Ga 为代表的磁 性形状记忆合金因其可在磁场作用下发生可逆应变, 实现大可逆应变与快响应频率的完美结合而引起材料 研究学界的广泛兴趣^[2,3]。然而 Ni-Mn-Ga 体材料脆性 大的缺点,极大限制了这种材料的应用,与 Ni-Mn-Ga 合金相比,Ni-Fe-Ga 合金可以通过调节合金的成分以 及热处理工艺,在合金中引入第二相(y 相),使得材料 的 韧性得到显著改善,获得良好的加工性能^[4,5]。Ni-Fe-Ga 合金具有大的磁晶各向异性能和低的孪晶界 面移动能^[6,7],有望实现大磁感生应变。但是,目前 y 相的析出的影响因素以及 y 相增强 NiFeGa 合金韧性的 微观机制尚不清楚。

本实验以铁磁性 Co 元素取代 Ni-Fe-Ga 合金中的 Ni 或 Fe,并利用光学显微分析和能谱分析考察 Co 含 量对 Ni-Fe-Ga-Co 合金显微组织和相组成的影响规 律,并采用室温拉伸试验研究 Ni-Fe-Ga-Co 合金的力 学行为及其断裂特性,以揭示 y 相增韧的微观机制, 为具有良好加工性和磁感生应变特性的磁性形状记忆 合金的开发提供理论参考。

1 材料与方法

收稿日期: 2008-01-24

基金项目: 国家自然科学基金项目(50131010)

作者简介: 高智勇, 男, 1975年生, 博士, 副教授, 哈尔滨工业大学材料物理与化学系, 黑龙江 哈尔滨 150001, 电话: 0451-86418745, E-mail: sma@hit.edu.cn

试验用 Ni₅₆Fe₁₇Ga_{27-x}Co_x(x=0, 2, 4, 6)多晶试样以 纯度为 99.95%的电解镍、99.95%的铁、99.91%的镓和 99.97%的电解钴为原料,采用高真空电弧熔炼炉熔 炼。为了保证铸锭化学成分的均匀性,每个试样翻转 熔炼 4 次。熔炼结束后,待其冷却后取出。经 DSC 差 热分析,合金的马氏体相变温度如表 1 所示。

表 1 Ni₅₆Fe₁₇Ga_{27-x}Co_x合金的马氏体相变温度(℃) Table 1 Martensitic transoformation temperatures of

NiscFer	Gazz	"Co.	allovs
111561 017	Ga27.	$x \cup \cup x$	anoys

Alloys	Ms	$M \mathrm{f}$	As	$A \mathbf{f}$
Ni ₅₆ Fe ₁₇ Ga ₂₇	94.5	91.3	98.3	101.9
Ni ₅₆ Fe ₁₇ Ga ₂₅ Co ₂	119.3	112.9	122.8	131.0
Ni ₅₆ Fe ₁₇ Ga ₂₃ Co ₄	133.8	122.0	134.4	148.5
Ni ₅₆ Fe ₁₇ Ga ₂₁ Co ₆	177.0	143.0	139.6	171.0

用于显微组织观察的试样采用线切割方法从铸锭 上切尺寸约为6mm×10mm×2mm的小片,用丙酮 清洗后封入真空度为10⁻³Pa的石英管中,在850℃保 温12h,淬入冰水中。金相组织观察在Neophoto-I型 金相显微镜上进行。薄片试样经过粗磨、细磨、抛光, 最后进行化学腐蚀。腐蚀剂为 FeCl₃·6H₂O(10 g)+HCl(25 mL),再加蒸馏水至100mL。在室温下操 作,腐蚀时间约为5 s。采用 S-4700型场发射扫描电 子显微镜所配的能谱(EDS)测量合金组成相的化学成 用于拉伸试验的的试样,采用线切割方法从铸锭 下切下尺寸为3mm×1mm×35mm的条状试样,用丙 酮清洗后封入真空度为10⁻³Pa的石英管中,在850 ℃ 保温12h,淬入冰水中。拉伸试验在MTS-810电子万 能拉伸试验机上进行,夹头移动速度0.5mm/min。拉 伸断口分析在HITACHI S-3000 N型扫描电镜上进行。

2 结果与分析

2.1 Ni-Fe-Ga-Co 合金的显微组织

Ni-Fe-Ga 合金中,除了生成 L2₁相外,还极容易 形成 y 相,因此 Ni-Fe-Ga 合金常表现出两相共存的特 性。y 相的生成与合金成分、合成工艺以及后续热处 理有关。由于 y 相对 Ni-Fe-Ga 合金的马氏体相变、力 学性能以及形状记忆效应都会产生显著的影响,因此 两相共存是 Ni-Fe-Ga 合金开发成磁性形状记忆合金 中不可忽视的重要环节。

图 1 是 Ni₅₆Fe₁₇Ga_{27-x}Co_x(x=0, 2, 4, 6)合金室温下 的光学显微组织。由图可见, Ni₅₆Fe₁₇Ga₂₇ 合金室温 显微组织由马氏体和 y 相两相组成, y 相细小弥散地 分布在晶界处, 如图 1a 所示。掺入 Co 元素后, y 相 随机分布在马氏体板条中,随着 Co 含量增加, y 相 的平均尺寸增大,体积百分含量显著上升,如图 1b~ 图 1d 所示。

图 1 Ni₅₆Fe₁₇Ga_{27-x}Co_x合金的光学显微组织

Fig.1 Optical micrographs of $Ni_{56}Fe_{17}Ga_{27-x}Co_x$ alloys: (a) $Ni_{56}Fe_{17}Ga_{27}$; (b) $Ni_{56}Fe_{17}Ga_{25}Co_2$; (c) $Ni_{56}Fe_{17}Ga_{23}Co_4$; and (d) $Ni_{56}Fe_{17}Ga_{21}Co_6$

表 2 为利用 Image-Pro Plus 软件计算的 Ni₅₆Fe₁₇-Ga_{27-x}Co_x 合金中第二相的体积百分含量。从中可以看 到, Ni₅₆Fe₁₇Ga₂₇ 合金中 y 相的体积百分含量只有 1%, 而当 Co 含量增加到 6 at%时, 合金中 y 相的体积百分 含量增加到 71.98%, 成为体系的主导相。

表 3 为 Ni₅₆Fe₁₇Ga_{27-x}Co_x(x=0, 2, 4, 6)合金基体相 和y相的相组成。从表中数据可知, y相中 Ni 含量与 基体相基本相同, Fe、Co 含量远高于基体相, 而 Ga 含量远低于基体相,表明试验合金中 y 相是富 Fe 和 Co 而贫 Ga 相。值得注意的是,基体相中 Fe 含量随 着 Co 含量的增加而下降,但是基体相中 Fe+Co 含量 之和随合金成分变化很小(16.5at%~16.3 at%), 在 y 相 中也具有相类似的规律(23.3at%~24.0at%)。这表明, 在 Ni₅₆Fe₁₇Ga_{27-x}Co_x 合金中, 当 Fe 和 Co 原子的含量 之和达到 16at% 时, Fe 和 Co 原子在马氏体相中达到 最大饱和浓度,当Fe和Co原子含量之和超过16 at% 时,继续增加的 Fe、Co 原子不再进入马氏体相,而 是形成新的 y 相。同时, Fe 和 Co 原子在 y 相中也具 有最大饱和浓度(23 at%), Fe、Co含量的继续增加只 是造成 γ 相数量和尺寸的增加。由上述分析可见, Ni₅₆Fe₁₇Ga_{27-x}Co_x合金中,当 x=0 时,合金中 Fe 含量 约为 17 at%(>16 at%),因此 Ni₅₆Fe₁₇Ga₂₇ 合金中有少 量 y 相析出;随着 x 逐渐增加,Fe 和 Co 含量之和不 断增大,合金中 y 相的数量逐渐增加、尺寸逐渐增大。

表 2 Ni₅₆Fe₁₇Ga_{27-x}Co_x 合金 γ 相体积分数及晶粒尺寸

 Table 2
 The volume fraction and crystalline dimension of γ

phase f	for Ni	56Fe17	Ga _{27-x}	Cox	合金	alloys
---------	--------	--------	--------------------	-----	----	--------

Alleria		Volume fraction of γ	Crystalline dimension
	Alloys	phase/%	of γ phase/µm
	Ni ₅₆ Fe ₁₇ Ga ₂₇	1.02	1.18
	Ni ₅₆ Fe ₁₇ Ga ₂₅ Co ₂	19.11	25.34
	Ni ₅₆ Fe ₁₇ Ga ₂₃ Co ₄	43.44	61.26
	Ni ₅₆ Fe ₁₇ Ga ₂₁ Co ₆	71.98	98.75

表 3 Ni₅₆Fe₁₇Ga_{27-x}Co_x 合金的相成分

 Table 3 Phase composition of Ni₅₆Fe₁₇Ga_{27-x}Co_x alloys

Allovs		Matrix phase/at%			γ phase/at%				
1110 9 5	Ni	Fe	Ga	Co	Ni	Fe	Ga	Со	
	Ni56Fe17Ga27	56.6	16.5	26.9	-	57.5	23.3	19.2	-
	Ni ₅₆ Fe ₁₇ Ga ₂₅ Co ₂	57.0	14.4	26.5	2.1	57.8	20.8	18.4	3.0
	Ni ₅₆ Fe ₁₇ Ga ₂₃ Co ₄	57.4	13.1	26.3	3.2	58.0	19.4	18.0	4.6
	Ni ₅₆ Fe ₁₇ Ga ₂₁ Co ₆	57.5	12.0	26.1	4.4	58.1	18.0	18.3	5.6

2.2 Ni-Fe-Ga-Co 合金的力学行为

图 2 是 Ni₅₆Fe₁₇Ga_{27-x}Co_x(x=0, 2, 4, 6)多晶试样室 温拉伸的应力-应变曲线。从图中可以看出,各种成分 的试验合金拉伸曲线上没有明显的屈服点,曲线由弹 性阶段直接进入塑性变形阶段,直到断裂。

表 4 示出 Ni₅₆Fe₁₇Ga_{27-x}Co_x 合金的主要力学性能数 据。从表中可以看到:随着 Co 含量增加,合金的断裂 强度和屈服强度都呈上升趋势;同时,与 Ni₅₆Fe₁₇Ga₂₇ 合金相比,掺入 Co 元素后,合金的延伸率有明显提高, 但随 Co 含量进一步增加,延伸率基本没有变化。

Fig.2 Tensile stress-strain curves of $Ni_{56}Fe_{17}G_{a27-x}Co_x$ alloys at room temperature

表 4 Ni₅₆Fe₁₇Ga_{27-x}Co_x合金力学性能

 $Table \ 4 \quad The \ mechanical \ properties \ of \ Ni_{56}Fe_{17}Ga_{27\text{-}x}Co_x$

Alloys	$\sigma_{0.2}/MPa$	$\sigma_{ m b}/{ m MPa}$	δ /%
Ni ₅₆ Fe ₁₇ Ga ₂₇	89.3	97.5	2.2
Ni ₅₆ Fe ₁₇ Ga ₂₅ Co ₂	130.8	225.3	5.1
Ni56Fe17Ga23Co4	155.9	228.6	5.1
Ni ₅₆ Fe ₁₇ Ga ₂₁ Co ₆	230.2	339.8	5.4

图 3 是 Ni₅₆Fe₁₇Ga₂₇ 合金在室温下拉伸的断口形 貌。从图中可以看到,裂纹在基体相中是沿着解理面平 直扩展的,当裂纹遇到析出相(y 相)时,要么绕过析出 相,要么将析出相整体拔出,表明析出相发生了微小的 塑性变形。可见,韧性 y 相有利于改善试验合金的变形 能力,但是 y 相尺寸对于其增韧效果好坏具有显著影 响,当 y 相尺寸较小时,尽管合金中也具有相当数量的 y 相,但这些 y 相对于改善合金韧性的作用不大。

图 4 是 Ni₅₆Fe₁₇Ga₂₅Co₂ 合金在室温下拉伸的断口 形貌。从图中可以看到,基体相中裂纹呈典型的河流 花样,表明基体相发生穿晶断裂。当裂纹遇到尺寸较 大的 y 相时,可以清晰地看到 y 相上产生的撕裂痕迹, 表明解理断裂受到 y 相的阻碍, Ni₅₆Fe₁₇Ga₂₇发生明显 的 塑 性 变 形 而 发 生 断 裂 。比 较 Ni₅₆Fe₁₇Ga₂₇ 和 Ni₅₆Fe₁₇Ga₂₅Co₂合金的显微组织可知,与Ni₅₆Fe₁₇Ga₂₇ 合金中细小针状和颗粒状 γ 相不同,Ni₅₆Fe₁₇Ga₂₅Co₂ 合金中 γ 相呈枝晶状,且尺寸显著增大,其阻碍裂纹 扩展和塑性变形的能力都明显增强,所以, Ni₅₆Fe₁₇Ga₂₅Co₂合金较Ni₅₆Fe₁₇Ga₂₇合金在屈服强度、 断裂强度和延伸率方面都有显著的提高。

图 3 Ni₅₆Fe₁₇Ga₂₇合金的断口形貌 Fig.3 SEM fractograph of Ni₅₆Fe₁₇Ga₂₇ alloy

图 4 Ni₅₆Fe₁₇Ga₂₅Co₂合金的断口形貌 Fig.4 SEM fractograph of Ni₅₆Fe₁₇Ga₂₅Co₂ alloy

图 5 和 6 示出了 Ni₅₆Fe₁₇Ga₂₃Co₄ 合金和 Ni₅₆Fe₁₇-Ga₂₁Co₆ 合金在室温下拉伸的断口形貌。观察断口形貌,发现断裂的主要特征是:基体相的穿晶断裂,析出相被拉长、撕裂或整体拔出,与 Ni₅₆Fe₁₇Ga₂₅Co₂ 合金的断口特征没有显著差别。此外,由显微组织分析可知,试验合金中 y 相数量随 Co 增加而增多, 韧性 y 相数量上的增加必然导致裂纹扩展的阻力增大, 从而使得合金的断裂强度升高。

图 5 Ni₅₆Fe₁₇Ga₂₃Co₄合金的断口形貌 Fig.5 SEM fractograph of Ni₅₆Fe₁₇Ga₂₃Co₄ alloy

图 6 Ni₅₆Fe₁₇Ga₂₁Co₆多晶合金的断口形貌 Fig.6 SEM fractograph of Ni₅₆Fe₁₇Ga₂₁Co₆ alloy

3 结 论

1) 室温下,Ni-Fe-Ga-Co 合金显微组织由马氏体 和 y 相两相组成, y 相数量随 Co 含量增加而增多。Fe 和 Co 原子在马氏体相中存在最大饱和浓度,当二者 含量之和超过 16at%时,剩余的 Fe 和 Co 原子以 y 相 形式析出。y 相为富 Fe 和 Co 而贫 Ga 相,且 Fe 和 Co 原子的最大饱和浓度约为 23at%。

2) 随着 Co 含量的增大,合金的屈服强度和断裂 强度呈升高趋势; Co 含量为 2 at%时,合金的延伸率 从 2.2%提高到 5.1%,随 Co 含量继续增大,合金的延 伸率基本保持不变。

3) Ni₅₆Fe₁₇Ga₂₇ 合金的断口特征为:基体相解理断裂,而 y 相或被裂纹绕过或被整体拔出; Ni₅₆Fe₁₇Ga_{27-x}Co_x(x=2, 4, 6)合金的断口特征为:基体相 解理断裂, y 相被拉长、撕裂或整体拔出。这说明 y 相有利于合金韧性,但增韧效果受到 y 相尺寸的影响。

参考文献 References

- [1] Ullakko K, Huang J K, Kokorin V V et al. Appl Phys Lett[J], 1996, 69(13): 1966
- [2] Ullakko K, Huang J K, Kokorin V V et al. Scr Mater[J], 1997, 36(10): 1133
- [3] Sozinov A, Likhachev A A et al. Appl Phys Lett[J], 2002, 80: 1746
- [4] Li Y, Jiang C B, Liang T et al. Scripta Materialia[J], 2003, 48: 1255
- [5] Murakami Y et al. Appl Phys Lett[J], 2003, 82(21): 3695
- [6] Sutou Y, Kamiya N, Omori T et al. Appl Phys Lett[J], 2004, 84: 1275
- [7] Morito H, Oikawa K, Fujita A. Scripta Matreialia[J], 2005, 53: 1237

Microstructure and Mechanical Properties of Ni-Fe-Ga-Co Ferromagnetic Shape Memory Alloys

Gao Zhiyong¹, Sui Jiehe¹, Li Min², Yu Huiru¹, Cai Wei¹ (1. Harbin Institute of Technology, Harbin 150001, China)

(2. Military Representative Office of Liming Aero-Engine Cooperation, Shenyang 110043, China)

Abstract: The microstructure and mechanical properties of $Ni_{56}Fe_{17}Ga_{27-x}Co_x(x=0, 2, 4, 6)$ magnetic shape memory alloys have been studied, and the influence of Co addition on γ phase and the mechanism for increasing toughness by γ phase were revealed. The results show that the microstructure of as-melted alloys is composed of martensite phase and γ phase at room temperature. With increasing Co content, the volume of γ phase increases. For the martensite phase, the saturation solubility of Fe and Co atoms is fixed. If the total content of Fe and Co atoms exceeds 16 at %, the residual atoms will exist in the form of γ phase, which is rich in Fe and Co atoms. Besides, the saturation solubility of Fe and Co atoms in γ phase is around 23 at %. The tensile tests show that the yielding strength and fracture strength increase with increasing Co content. The fracture mechanism of martensite phase is transcrystalline fracture, and the γ phase is gliding fracture, it proves that the γ phase improves the toughness of experimental alloys.

Key words: Ni-Fe-Ga-Co alloy; magnetic shape memory alloy; microstructure; mechanical properties

Biography: Gao Zhiyong, Ph. D., Associate Professor, Materials Physics and Chemistry Department, Harbin Institute of Technology, Harbin 150001, P. R. China, Tel: 0086-451-86418745, E-mail: sma@hit.edu.cn