金属多孔球形银粉的制备

张 健,李广忠,李 程,张文彦,奚正平

(西北有色金属研究院 金属多孔材料国家重点实验室,陕西 西安 710016)

摘 要:采用化学还原沉积法,以水合联氨为还原剂,在分散剂和自制的有机混和溶剂的保护下,控制溶液中银离子 浓度为 10~40 g.L⁻¹,分散剂的加入量 1.5~3 g.L⁻¹,有机混合制剂 60 g.L⁻¹,还原反应在瞬间完成,还原出粒度为纳米级 的银颗粒,在可控的条件下纳米颗粒聚集为多孔团粒银粉,快速从溶液中沉淀分离。采用扫描电镜检测,多孔团粒球 体的粒度为 40~80 μm;采用比表面积及孔隙度检测仪测试比表面积可以达到 16 m²/g 以上,其孔道具有很高的通透性,不同于常规的超细银粉。

关键词:银粉;多孔体;制备

中图法分类号: TB383

文献标识码: A 文章编号: 1002-185X(2009)07-1250-04

纳米粉末是指粒径介于 1~100 nm 的颗粒^[1]。纳米 银粉是一种新兴的功能材料,与普通银粉相比,具有粒 度小、比表面积大、活性大、催化活性高、熔点低、烧 结性能好等优点,同时还保留了金属银的导电性好、抗 菌性能好、电铸银颜色光亮的特点,广泛应用于电子、 冶金、化工、医药、军工、航空、航天等领域^[2-5]用作 催化剂材料、防静电材料、抗菌材料、超低温制冷、低 温超导材料、电子浆料、生物传感器材料以及抗菌、除 臭及吸收部分紫外线的功能材料等^[6-8]。

纳米银粉的性能与其粒度、结构关系十分密切[9], 纳米银粉因其特殊的结构而具有不同于传统材料的物 理、化学性质,是基础理论研究的重要材料之一。纳 米银粉具有很高的表面活性,已成为电气和电子工业 中应用最为广泛的一种贵金属材料。纳米银粉的制备 方法一直是纳米材料研究中的一项重要内容,常用的 制备方法分为物理法和化学法。物理法主要是真空蒸 镀、溅射镀和离子镀等:化学法有溶胶-凝胶法、微乳 液法、氧化还原法和电镀法等;另外还有超声化学法、 微波合成法等[10]。化学法制备纳米银粉[5]具有操作简 单、条件容易控制、银粉粒度小、成本低、速度快等 优点。化学还原法是化学法中制备纳米粉体的一种重 要方法,化学还原法制备纳米粉具有产量大、制粉设 备和过程比较简单、操作方便、容易控制粉末粒度和 形貌、生产成本低并易于实现产业化等优点,是目前 应用和研究最广的制备纳米银粉的方法。化学还原法 制备纳米银粉是在高分子保护下,以水合联氨、双氧 水、抗坏血酸、硼氢化钠、葡萄糖、脂肪醛、脂肪胺 等为还原剂,在溶液中通过化学还原反应使银颗粒沉 淀出来。缺点是得到的银颗粒不易转移,容易包含杂 质和发生团聚,不少研究者采用表面活性剂、配位体 和高分子材料以阻止纳米银粉的团聚^[11~13]。

本研究以水合联氨为还原剂^[14],在分散剂和自制 的有机混合制剂的作用下,采用化学还原沉积法制备 出粒度为纳米级银粉,使用可控团聚技术将若干个纳 米银颗粒聚集形成多孔球体状态银粉。多孔球体的粒 径为 40~80 µm,比表面积可以达到 16 m²/g 以上。该 多孔球形银粉可满足大尺寸、高比表面积、高活性的 特殊用途的需要。

1 实 验

实验用原料为银锭或电解银粉(纯度>99.0%)。所 用试剂为水合联氨、硝酸、氨水、分散剂、明胶,实 验用水为去离子水。所用设备有:天津泰斯特仪器有 限公司生产的WG-71真空烘箱;上海浦东物理光学仪 器厂生产的精密增力电动搅拌器;福州科迪电子技术 有限公司的 kerndy 精密电子天平;美国麦克公司的比 表面积及孔隙度检测仪(ASAP2020N); JEOL 的 FE-SEM 扫描电子显微镜等。

将原银用硝酸溶解后用去离子水稀释至设定浓度,然后在碱性条件下适当加入分散剂,有机混合制剂,在中速搅拌条件下,用还原剂将银还原出来,经过倾析分离、洗涤,用烘箱干燥得到银粉。所得银粉用扫描电子显微镜观察粒度及形貌,测试比表面积。 实验工艺流程如图1所示。

收到初稿日期: 2008-12-08; 收到修改稿日期: 2009-05-15

作者简介:张 健,男,1955年生,教授级高工,西北有色金属研究院,陕西 西安 710016,电话: 029-86231095, E-mail: Zhangjian@c-nin.com

2 结果与讨论

2.1 分散剂加入量对银粉平均粒度的影响

图 2 所示为在银离子浓度 30 g/L 时分散剂加入量 对银粉平均粒度的影响。可见,分散剂加入量为 1.5 g.L⁻¹时,银粉平均粒度为 0.8 μm 左右。随着分散剂用 量继续增大,则其扩散到银晶核表面的速率增加,抑 制银晶核长大的能力增大。但当分散剂加入量由 2.0 g.L⁻¹增加至 3.0 g.L⁻¹时,银粉的平均粒度由 0.50 μm 降 到 0.1 μm 以下,再增加分散剂的加入量,银粉平均粒 度减小不明显。

在不使用分散剂的条件下,向含银溶液中直接加入水和联氨,不论硝酸银溶液浓度大小,都难以得到 超细银粉。可见,分散剂的加入数量,对还原银粉的 粒度影响很大,随着分散剂加入量的增加,银粉粒度 变小,这是由于银离子还原生成银晶核后,分散剂扩 散到银晶核的表面,抑制了银晶核的进一步长大,由 于银粉的比表面积很大,表面能很高,银粉表面存在 有很大的剩余力场,把分散剂吸附在银晶粒表面,形 成一层薄膜,这层薄膜一直阻止银晶核长大,阻止已 形成的银粒之间聚集结块,使银粉处于充分分散状态, 从而使银粉的粒度和均匀程度都能得到保证。

为了获得粒度为 0.1 μm 的纳米银粉,实验表明, 分散剂的加入量以 3.0 g.L⁻¹为准,在此用量下,分散 剂刚好能在所有银晶核表面形成一层保护层,但分散 剂浓度过大,可能会使溶液粘度增大,会使银粉还原 后获得银粉的一次成品率降低。

Fig.2 The variation of particle size of nanoporous silver powder with dispersant addition amount

2.2 银离子浓度对银粉粒度的影响

取已制备好的硝酸银溶液 4 份,溶液银离子浓度 分别为 10, 20, 30, 40 g.L⁻¹, 装入反应器中, 固定分 散剂的加入量为 3 g.L⁻¹,进行机械搅拌,在溶液温度 40~80 ℃时,加入水合联氨,加入量为 Ag(g):N₂H₄H₂O (85%mL)=1:1,研究银离子浓度对银粉粒度的影响, 结果如图 3 所示。可以看出,随着溶液中银浓度降低, 得到银粉粒度变小。这是因为溶液中含银浓度愈小, 银离子在溶液中分散程度愈高,这就增加了全部银离 子同时被还原成银晶核的机会,使银离子向银晶核表 面扩散迁移距离和时间增加,实际上抑制已形成银晶 体的长大,增加每个银离子形成银晶核的几率。已经 形成的银晶核长大受到抑制,使得晶体生长速率降低, 在过量还原剂和搅拌条件下,可造成一个有利形成更 多银晶粒的气氛,使得银晶核的形成速度大于银晶核 的长大速度, 银粉粒度的增大趋势降低。因此, 降低 银离子浓度,有利于超细银粉的形成。

Fig.3 The variation of particle size of nanoporous silver powder with sliver ion concentration

2.3 混合制剂对多孔银团粒形成的影响

通过上述工艺采用水合联氨还原得到的银粉具有 纳米结构,真实比表积提高。为了获得多孔银粉,则 在体系中引入自制的有机混合制剂,为高分子混合物, 水中溶解度很大,非极性。在硝酸银水溶液中,可充 满银离子空隙,可限制和减弱银离子在溶液中扩散迁 移的能力,阻止银离子在还原过程中互相吞并而长大 成晶体。另外,在体系中不易形成水缔合物,具有一 定的疏水性,可使已还原的颗粒银粉聚集成团粒,快 速从溶液中沉降,形成多孔球形银粉。待反应完毕, 经固液分离、洗涤、干燥等一系列处理后,形成多孔 银粉。根据加入量的试验可使多孔球体粒度控制在 40~80 μm,该多孔球形银粉由纳米级的银粒子组成, 且其孔道是连通的,呈微孔道的状态,避免了传统银 粉中相当部分的微孔独立存在,根据多孔材料的开孔、 闭孔理论,多孔球团粒的孔道是连通的,具有一定的 沟联度等。由于微孔独立存在,最大限度的提高了比 表面积,在应用过程中,有利于反应物及反应产物的 渗透、扩散和传质。多孔球形银粉的 SEM 照片如图 4 所示。图 4a 为多孔球形银粉照片,图 4b 为由纳米银 颗粒聚集成的银团粒照片,图 4c 为银团粒中单个纳米 颗粒的 SEM 照片。

图 4 多孔球形银粉的 SEM 照片

Fig.4 The FESEM images of sphericity porous silver powders group particles: (a) powders; (b) agglomerates; (c) particles of agglomerate

2.4 混合制剂对多孔银粉比表面积的影响

采用美国麦克公司的比表面积及孔隙度检测仪对 纳米银粉的比表面积进行测试,结果如表1所示。可 见,混合制剂对多孔银粉比表面积有较大的影响,在 不加入混合制剂的情况下,还原后由于钠米颗粒团聚, 在后处理过程中难以分散,银粉的比表面积仅有1 m²/g,而当有机混合制剂的加入量为60g.L⁻¹时,银粉 的比表面积达到16 m²/g 以上,使其具有高的活性。 一般情况下,粒度越细,比表面积越大。按 GB/T1774-1995 超细银粉的国家标准,平均粒度0.5~ 1 μm 时,银粉的比表面积<1.2 m²/g。因此,10~100 μm 粒度范围的银粉比表面积不可能达到10 m²/g。而 只有纳米银粉呈多孔体形状时,才能达到高的比表面 积。通过控制混和制剂的加入量和加入方式,可以有

表 1 混合制剂对银粉比表面积的影响 Table 1 Relationship between mixed agent and silver

powders specific surface area		
Samples	Added amount/g.L ⁻¹	Silver powder specific surface area/m ² ·g ⁻¹
1	0	1
2	30	4.8
3	60	16.1

效控制多孔球体的尺寸。此外,混合制剂还可以使多 孔银粉迅速从溶液中沉降,溶液澄清,采用倾析的方 法使固液分离。一次成品率接近100%。

3 结 论

 采用化学还原沉积的方法,以水合联氨为还原 剂,在分散剂和自制的有机混合制剂的保护下,可以 制备由纳米银颗粒组成的多孔球形银粉。

2) 在银离子浓度为 10~40 g.L⁻¹,分散剂的加入量 1.5~3 g.L⁻¹,有机混合制剂加入量 60 g.L⁻¹,可还原出纳米级银颗粒,在可控的条件下聚集为多孔团粒球形银粉,其粒度为 40~80 μm,比表面积可以达到 16 m²/g 以上。

3)还原后,纳米银颗粒聚集的多孔团粒迅速从溶液中沉降,可采用倾析的办法实现固液分离,经洗涤、 干燥等一系列处理后,形成多孔银粉。该团粒球形银 粉的孔道是连通的,有利于反应物及反应产物的渗透、 扩散和传质。

参考文献 References

[1] Chen Weiliang (陈为亮), Yan Jianying (阎建英), Song

Ning(宋 宁). Precious Metals(贵金属)[J], 2006, 27(2): 14

- [2] Ning Yuantao(宁远涛), Zhao Huaizhi(赵怀志). Precious Metals(贵金属)[J], 2003, 24(3): 54
- [3] Liu Xong(刘 雄), Tan Fubin(谭富彬), Wu Qingwei(吴庆伟) et al. Precious Metals(贵金属)[J], 2000, 21(1): 8
- [4] Zhou Quanfa (周全法), Xu Zheng (徐 正), Bao Jiancun (包建春) et al. Fine Chemical(精细化工)[J], 2001, 18(1): 39
- [5] Liao Li(廖 立), Xiong Ji(熊 继), Xie Kenan(谢克难). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2004, 33(5): 558
- [6] Jiang Chengjun(江成军), Duan Zhiwei(段志伟), Zhang Zhenzhong(张振忠) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2007, 36(4): 724
- [7] Baker C, Pradhan A, Pakstis L et al. Journal of Nanoscience and Nanotechnology[J], 2005, 5(2): 244
- [8] Chu Guang(楚 广), Yang Tianzu(杨天足), Liu Weifeng(刘 伟锋) et al. Precious Metals(贵金属)[J], 2006, 27(1): 57

- [9] Xiong Jinyu(熊金钰), Xu Guocai(徐国财). Metallic Functional Materials(金属功能材料)[J], 2004, 11(2): 38
- [10] Zhang Haoran(张 吴 然), Li Qingbiao(李 清 彪), Sun Daohua(孙道华) et al. Precious Metals(贵金属)[J], 2005, 26(2): 51
- [11] Cheng Jingquan(程敬泉), Yao Suwei(姚素薇). Rare Metal Materials and Engineering(稀有金属材料与工程)[J] 2005, 34(11): 1717
- [12] Wang Wusheng(王武生), Pan Caiyuan(潘才元), Zeng Jun(曾 俊) et al. Chemical Journal of Chinese Universities(高等学 校化学学报)[J], 2001, 22(4): 700
- [13] Sun Honggang(孙红刚), Liu Heng(刘恒), Yin Guangfu(尹 光福) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2006, 35(7): 1146
- [14] Zhang Jian(张健), Wu Xian(吴贤) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2007, 36(Suppl 3): 399

Fabrication of Sphericity Nanoporous Metal Silver Powders

Zhan Jian, Li Guangzhong, Li Cheng, Zhang Wenyan, Xi Zhengping

(State Key Laboratory of Porous Metals Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China)

Abstract: The fabrication method of sphericity nanoporous metal silver powders by nanosilver powders is described in the present paper. In this technique, a chemical deoxidize deposited way is used by taking N₂H₄.H₂O as deoxidizer, the nanosilver powders are prepared by deoxidized silver ions which are protected by the dispersant and the home-made organic mixed solution. The silver ions concentration, the dispersant adding amount, and the organic mixed preparation are 10~40 g/L, 1.5~3 g/L, and 60 g/L, respectively, in the solution, then the reduction reaction is finished instantly with a nanosilver granularity of 10~20 nm. The nanosilver powders are conglomerated to sphericity nanoporous silver powders under controllable conditions, fast separated from the solution by deposited. The morphology was studied using a JEOL JSM-6400 FESEM, the results show that the sphericity nanoporous silver powders granularity is 40 ~80 μ m. The specific surface area of the nanoporous silver powders is more than 16 m²/g measured using a Micromeritics ASAP 2020, and its pore channel has a very high penetration, different from the traditional microminiature silver powders.

Key words: nano silver powder; porous body; fabrication

Biography: Zhan Jian, Professor, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, P. R. China, Tel: 0086-29-86231095, E-mail: Zhangjian@c-nin.com