Al-RE(La,Y)合金相稳定性与固溶度的第一性原理

王海燕^{1,2},高雪云³,曾建民¹,任慧平²,赵艳君¹

(1. 广西大学 广西有色金属及特色材料加工重点实验室,广西 南宁 530004)
 (2. 内蒙古科技大学,内蒙古 包头 014010)
 (3. 中冶东方工程技术有限公司,内蒙古 包头 014010)

摘 要:采用基于密度泛函理论的第一性原理,计算了 Al-La 与 Al-Y 二元合金中金属间化合物的基态特征,在此基础上,研究了稀土 La 与 Y 元素在 Al 中的溶解度,并计算了稀土铝合金中优先析出相的弹性模量。结果表明, Al-La 和 Al-Y 过饱和固溶体中,优先析出相分别为 Al₁₁La₃(IMMM)和 Al₃Y(R-3M),且最稳定相均为 Al₂RE 金属间化合物。对于含有微量稀土元素的铝合金在实验中常见的优先析出相, Al₃Y(R-3M)较 Al₃Y(PM-3M)和 Al₁₁La₃(IMMM)具有更好的稳定性和强化效果。La 和 Y 在 Al 中的溶解度计算结果显示,与 La 相比,Y 在 Al 中具有较高的溶解度。

关键词:稀土; Al; 固溶; 析出相; 第一性原理

中图法分类号: TG146.2⁺1 文献标识码: A

高强度铝合金具有较高的比强度、优良的加工性 能、焊接性能和抗腐蚀性能,被广泛应用于汽车、船 舶、航天航空和军事等领域^[1,2]。近几十年来, 随着 航空工业和汽车工业的迅速发展,铝合金正面临前所 未有的挑战,全面提升铝合金综合性能的重点越来越 聚焦在微合金化上。稀土微合金化是提高合金性能并 进一步开发新型铝合金的重要手段。研究表明^[3,4],在 铝合金中加入微量稀土元素,可以有效提高铝合金的 热强性、耐磨/蚀性、抗疲劳性,改善热加工性能、低 温性能、抗氧化性等。

然而,目前对稀土在铝合金中应用的研究主要集 中于净化和变质夹杂,尚没有足够的证据能够精确测 定与表征稀土的存在形式。因此,稀土在铝合金中的 作用机理还有待于深入探索与研究。

判断元素的合金化作用,首先应考虑其存在状态 与固溶量。稀土析出相对铝合金的性能具有重要影响, 其析出形态与稀土元素在 Al 中的固溶度密切相关^[5], 因而掌握某一温度下稀土元素在 Al 中的固溶度对于 铝合金成分设计至关重要^[6]。然而,由于稀土元素在 Al 中的溶解度非常小,与其它元素形成固溶体时,只 能生成溶解度甚小的端际固溶体,通过实验方法很难 测到准确的数值,不同的实验往往得出相差较大的结 果。因此,在实际研究中,稀土在合金中的固溶量测 定、分布稳定性的控制等相关研究较为困难。此外, 文章编号: 1002-185X(2017)03-0735-05

由于铝合金体系的复杂与稀土作用分析表征的局限和 难度,尚没有足够的证据能够精确表征稀土的存在, 导致各种 RE 对不同系列金属、合金的作用规律和机 理还存在较多争议,稀土对铝合金的中固溶与析出行 为的研究尚缺乏系统报道。

基于密度泛函理论的第一性原理能够在不依赖实 验数据的条件下准确预测合金的电子结构与热力学信息,相比实验研究更能真实客观反映材料的本征物性, 因而被广泛应用于合金材料的研究中。研究表明^[7,8], 通过第一性原理计算可以得到较为准确的合金溶解度 曲线,并可深入探索稀土的占位倾向,是研究稀土在 合金中作用机理的有效方法。

为了能对稀土的存在形态与微合金化机理有更加 准确的认识,本研究拟采用第一性原理计算 Al-La 与 Al-Y 二元合金中金属间化合物的基态特征,以及稀土 La 与 Y 元素在 Al 中的溶解度。在此基础上,深入探 索微量稀土对铝合金中析出相与力学性能的影响规 律,为稀土铝合金的合理设计提供理论依据,从而为 最终性能的预测和改善提供新的途径。

1 计算方法

采用基于密度泛函理论(DFT)框架下的 Vienna ab-initio simulation package(VASP)软件包完成^[9]。计算 中选择投影缀加波方法(PAW),交换关联泛函采用广

收稿日期: 2016-03-10

基金项目: 广西大学广西有色金属及特色材料加工重点实验室开放基金(GXKFJ14-01)

作者简介:王海燕,女,1975年生,博士生,副教授,内蒙古科技大学材料与冶金学院,内蒙古包头014010, E-mail: windflower126@163.com

义梯度近似 (GGA),截断能量为 350 eV。布里渊区 积分采用 Monhkorst-Pack 特殊 k 网格点方法。计算中能量收敛标准为能量小于 10⁻⁴ eV,每个原子的剩余力 小于 0.1 eV/nm。在计算固溶体相关计算时,建立含有 128 个原子的 3×3×3 Al 超晶胞模型。对纯 Al 超晶胞结构优化后的点阵常数 a=0.4103 nm,与已报道的 a= 0.4040 nm 较为接近^[10]。

2 计算结果及分析

2.1 基态计算

稀土元素在 Al 中溶解度的计算,需要首先确定相关 Al-RE 二元体系的基态^[11]。利用 VASP 软件,对 Al-La 和 Al-Y 二元合金中出现的金属间化合物进行了完全结构优化,并利用式(1)计算了 Al_mRE_n 的形成焓^[12]:

$$\Delta H_{\rm f}^{\rm Al-RE} = H_{\rm atom}^{\rm Al-RE} - \frac{m}{m+n} H_{\rm Al}^{\rm atom} - \frac{n}{m+n} H_{\rm RE}^{\rm atom}$$
(1)

式中, $H_{\text{atom}}^{\text{Al-RE}}$ 、 $H_{\text{Al}}^{\text{atom}}$ 和 $H_{\text{RE}}^{\text{atom}}$ 分别为化合物 $\text{Al}_{m}\text{RE}_{n}$ 、 纯 Al 和纯 RE(La 和 Y)的平均每个原子的总能量。

不同成分 Al-RE 金属间化合物形成焓的计算结果 如图 1 所示。将各平衡相对应的数据点以折线连接, 构成凹包(convex-hull), 亚稳相位于凹包上方。

由图 1a 可以看出, Al-La 二元合金的稳定相为 Al₁₁La₃、Al₃La、Al₂La、AlLa 和 AlLa₃, Al-Y 二元合

金的稳定相则为 Al₃Y、Al₂Y 和 AlY。可以看出, 2 种 二元合金均有 Al₃RE、Al₂RE 和 AlRE 稳定相,其中 Al₂RE 的形成焓最低。这表明,在 Al-La 和 Al-Y 二元 合金中, Al₂RE 金属间化合物的结构最为稳定。实验 研究也显示, Al₂RE₁结构具有最高的熔点^[13]。

表 1 给出了 2 种二元合金稳定相基态的计算结 果。可以看出,计算所得的晶格常数和形成焓与文献 报道^[14-20]的实验结果符合较好。通过以上的基态计算, 确定在 Al-La 和 Al-Y 二元体系的过饱和固溶体中,优 先析出相分别为 Al₁₁La₃(IMMM)和 Al₃Y(R-3M)。

值得注意的是,在Y的原子分数为0.25时,有一 个形成焓数值为-0.568 eV,稍大于基态Al₃Y(R-3M) 的形成焓-0.584 eV,这一亚稳相对应的Al₃Y空间群 为PM-3M,如图1b所示。由于Al₃Y(PM-3M)的形成 焓与基态Al₃Y(R-3M)非常接近,可以认为前者也比较 稳定。研究显示,在微量稀土铝合金晶界发现 L1₂(PM-3M)结构Al₃Y^[21]。图1与表1中的形成焓计 算结果解释了以上现象。

2.2 弹性性质

弹性常数是表征晶体力学性能的重要参数,反映 了材料的稳定性和抵抗外加应力的能力。为了探究稀 土析出相对 Al 合金的强化机制,分别计算了析出相 Al₁₁La₃和 Al₃Y 的弹性常数。

本研究采用应变-应力方法计算了纯 A1、 Al₁₁La₃(IMMM)、Al₃Y(R-3M)和 Al₃Y(PM-3M)的弹性 常数,结果如表2所示。表2同时给出了已报道的纯

表 1 Al-La 和 Al-Y 二元合金稳定相基态计算结果 Table 1 Calculated ground state results of stable phase in

Al-La and Al-Y binary alloys							
Dhaca	Crystal	Space	Lattice	$\Delta H_{ m f}^{ m Al-RE}$			
Phase	structure	group	parameter/nm				
Al-La							
Al ₁₁ La ₃	Orthorhombia	IMMM	<i>a</i> =0.4437 nm,	-0.570			
	Orthornombic		c/a=2.291	$-0.463^{[14]}$			
Al ₃ La	Hexagonal	D62/MMC	<i>a</i> =0.4361 nm,	-0.590			
		r 05/WINC	c/a=2.315				
Al ₂ La	Cubic	ED 3M	<i>a</i> =0.8154 nm	-0.603			
		1.D-211	<i>a</i> =0.7963 nm ^[19]	$-0.563^{[15]}$			
AlLa	Orthorhombic	CMCM	<i>a</i> =0.9443 nm,	-0.521			
		CINCIN	<i>c/a</i> =0.613	$-0.477^{[16]}$			
Δ11 a.	Cubic	PM-3M	<i>a</i> =0.4985 nm	-0.301			
7 HLuy	cubic	1 101 5101	u=0.4705 mm	$-0.275^{[15]}$			
Al-Y							
Al_3Y	Trigonal	R-3M	<i>a</i> =0.6295 nm,	-0.584			
		K 5101	<i>c/a</i> =3.326	$-0.514^{[17]}$			
Al_2Y	Cubic	ED 2M	<i>a</i> =0.7755 nm	-0.657			
	Cubic	1 ⁻ D-314	<i>a</i> =0.7806 nm ^[20]				
AlY	On the only on the second	CMCM	<i>a</i> =0.3694 nm,	-0.522			
	Orthorhombic	CMCM	<i>c/a</i> =1.164	$-0.556^{[18]}$			

表 2 纯 Al、Al₁₁La₃(IMMM)、Al₃Y(R-3M)和 Al₃Y(PM-3M)的弹性常数(*C_{ij}*)

Table 2 Calculated elastic constants (C_{ij}) of AI, AI ₁₁ La ₃ (IMMM), AI ₃ Y(K-5M) and AI ₃ Y(PM-5M) (GPa)											
Phase	Space group	C_{11}	C_{12}	C_{13}	C_{14}	C_{22}	C_{23}	C_{33}	C_{44}	C_{55}	C_{66}
Al	PM-3M	90.73	44.11						22.93		
Al ^[23]	PM-3M	95	44						33		
$Al_{11}La_3$	IMMM	130.42	51.53	45.44		113.50	48.84	125.39	49.82	61.38	56.62
Al ₃ Y	R-3M	136.78	37.23	50.91	-2.35			162.48	75.46		
Al ₃ Y	PM-3M	150.74	28.35						39.21		

Al 弹性常数,与本研究计算结果符合较好。对于力学 稳定的晶体结构,其弹性常数 *C_{ij}* 需满足 Born 判据, 正交晶系 Al₁₁La₃(IMMM) 的判定条件为^[22]:

$$C_{11}>0, C_{22}>0, C_{33}>0, C_{44}>0, C_{55}>0, C_{66}>0,$$

 $C_{11}+C_{22}-2C_{12}>0, C_{11}+C_{33}-2C_{13}>0,$

$$C_{22}+C_{33}=2C_{23}>0, C_{11}+C_{22}+C_{33}+2C_{12}+2C_{13}+2C_{23}>0$$
(2)
三方晶系 Al₃Y(R-3M) 的判定条件为^[22]:

 $C_{11} > |C_{12}|, (C_{11} + C_{12})C_{33} - 2C_{13}^2 > 0,$

$$(C_{11}-C_{12})C_{44}-2C_{14}^2>0$$
 (3)
立方晶系 Al₃Y(PM-3M)的判定条件为^[23]:

$$C_{11} = |C_{12}| > 0, C_{11} > 0, C_{44} > 0, C_{11} = 2C_{12} > 0$$
 (4)

利用表 2 所得的弹性常数,根据以上所述的判定 条件计算后显示,Al₁₁La₃(IMMM)、Al₃Y(R-3M)和 Al₃Y(PM-3M)均满足 Born 判据,说明这 3 种金属间化 合物在力学性能上是稳定的。

材料的机械性能等取决于弹性模量,主要包括体 弹模量 B、剪切模量 G、杨氏模量 E 和泊松比 v,可 通过 Voigt-Reuss-Hill(VRH)近似方法计算得到^[24]。

$$B_{\rm V} = \frac{1}{9} \left(C_{11} + C_{22} + C_{33} \right) + \frac{2}{9} \left(C_{12} + C_{13} + C_{23} \right) \tag{5}$$

$$G_{\rm V} = \frac{1}{15} (C_{11} + C_{22} + C_{33} - C_{12} - C_{13} - C_{23}) + (C_{44} + C_{55} + C_{66})$$
(6)

$$B_{\rm R} = \frac{1}{\left(S_{11} + S_{22} + S_{33}\right) + 2\left(S_{12} + S_{13} + S_{23}\right)} \tag{7}$$

$$G_{\rm R} = \frac{15}{4(S_{11} + S_{22} + S_{33}) - 4(S_{12} + S_{13} + S_{23}) + 3(S_{44} + S_{55} + S_{66})} \quad (8)$$

$$B = \frac{1}{2} \left(B_{\rm V} + B_{\rm R} \right) \tag{9}$$

$$G = \frac{1}{2} \left(G_{\rm V} + G_{\rm R} \right) \tag{10}$$

$$E = \frac{9BG}{3B+G} \tag{11}$$

$$v = \frac{3B - 2G}{2(3B + G)}$$
(12)

式中, B_V 、 G_V 和 B_R 、 G_R ,分别为根据 Voigt 模型和 Reuss 模型计算的体弹模量和剪切模量, C_{ii} 为弹性刚 度常数, *S_{ij}*为弹性柔度常数, [*C_{ij}*]=[*S_{ij}*]⁻¹。 Al₁₁La₃(IMMM)、Al₃Y(R-3M)和 Al₃Y(PM-3M)弹性模 量的计算结果如表 3 所示。

体弹模量(B)反映了材料在压力作用下保持体积 不变的能力,剪切模量(G)用来表征材料在剪应力作用 下抵抗变形的能力,杨氏模量(E)的大小可以反映材料 的刚度,而泊松比则用来判断材料的塑性和脆性^[23]。

从表 3 可以看出, 3 种金属间化合物的泊松比较为 接近, 且小于 0.26, 说明在 Al-RE 合金中三者均为脆性 析出相; Al₃Y(R-3M)的体弹模量、剪切模量和杨氏模量 均高于 Al₁₁La₃,说明前者的强度和硬度均优于后者。与 此同时, 计算所得的 Al₃Y(PM-3M)弹性模量与 Al₁₁La₃ 非常接近,表明两者之间的机械性能较为相近。

2.3 固溶度计算

对于一定溶质原子(B)和空位(V)溶入 A 原 子基体形成的无序固溶体,若忽略溶质原子之间、溶 质与空位之间以及空位之间的相互作用,其焓值为:

$$H = H_{A}^{atom}N + \Delta H_{B,A}N_{B} + \Delta H_{V,A}N_{V}$$
 (13)
式中, H_{A}^{atom} 为纯溶剂 A 每个原子的焓, $\Delta H_{B,A}$ 和 $\Delta H_{V,A}$
分别为引入溶质 B 和空位置换溶剂原子后引起体系的
焓变, N 为超晶胞中的阵点数量, N_{B} 和 N_{V} 分别是溶
剂原子和空位的数量。

由公式(13)可知,固溶体中每个原子的焓值为: $H_{\text{atom}} = H/(N_{\text{B}} + N_{\text{A}}) = H_{\text{A}}^{\text{atom}} + \Delta H_{\text{B,A}} x_{\text{A}} + (\Delta H_{\text{V,A}} + H_{\text{A}}^{\text{atom}}) x_{\text{V}}$ (14) 其中, x_{α} (α =A, B, V)为溶剂、溶质或空位在固溶体中的原子浓度:

$$x_{\alpha} = N_{\alpha} / (N_{\rm A} + N_{\rm B}) \tag{15}$$

固溶体形成焓可以由下式得到:

$$\Delta H_{\text{atom}} = H_{\text{atom}} - x_{\text{A}} H_{\text{A}}^{\text{atom}} - (1 - x_{\text{A}}) H_{\text{B}}^{\text{atom}}$$
(16)

表 3 Al₁₁La₃(IMMM)、Al₃Y(R-3M)和 Al₃Y(PM-3M)的 弹性模量

Table 3 Elastic modulus of $Al_{11}La_3(IMMM)$, $Al_3Y(R-3M)$ and $Al_3Y(PM-3M)$

Phase	Space group	<i>B</i> /GPa	G/GPa	<i>E</i> /GPa	v
Al ₁₁ La ₃	IMMM	73.36	47.30	116.80	0.23
Al_3Y	R-3M	78.77	58.57	140.81	0.20
Al_3Y	PM-3M	69.15	46.89	114.74	0.22

将式(14)代入式(16)可得到:

 $\Delta H_{\text{atom}} = H_{\text{f}}^{\text{B}} x_{\text{B}} + H_{\text{f}}^{\text{V}} x_{\text{V}}$ (17) 式中, $H_{\epsilon}^{\text{B}} \pi H_{\epsilon}^{\text{V}}$ 分别为溶质和空位缺陷的形成焓^[25]:

$$H_{\rm f}^{\rm B} = \Delta H_{\rm B,A} - H_{\rm B}^{\rm atom} + H_{\rm A}^{\rm atom}$$
(18)
$$H_{\rm f}^{\rm V} = \Delta H_{\rm V,A} + H_{\rm A}^{\rm atom}$$
(19)

对于规则溶体模型,固溶体的形成自由能具有如 下形式:

$$\Delta G_{\text{atom}} = \Delta H_{\text{atom}} - T \Delta S_{\text{atom}}$$
(20)

式中,形成焓 ΔH_{atom} 可由(17)式得到,T为温度,形成 熵 ΔS_{atom} 可根据平均场近似计算^[26]:

$$\Delta S_{\text{atom}} = -\frac{k_{\text{B}}N}{N_{\text{A}} + N_{\text{B}}} \sum_{\alpha = \text{A}, \text{B}, \text{V}} c_{\alpha} \ln c_{\alpha}$$
(21)

式中, $k_{\rm B}$ 为玻尔兹曼常数, c_{α} 为固溶体中原子(A, B) 或空位的点阵浓度。

$$c_{\alpha} = N_{\alpha} / N \tag{22}$$

结合式(15)、式(21)和式(22),可将式(20)变换为:

$$\Delta G_{\text{atom}} = \Delta G_{\text{atom}}^{\text{B}} + \Delta G_{\text{atom}}^{\text{V}}$$
(23)

式中,

$$\Delta G_{\text{atom}}^{\text{B}} = H_{\text{f}}^{\text{B}} x_{\text{B}} + k_{\text{B}} T \left[x_{\text{B}} \ln x_{\text{B}} + (1 - x_{\text{B}}) \ln(1 - x_{\text{B}}) \right] \quad (24)$$

$$\Delta G_{\text{atom}}^{\text{V}} = H_{\text{f}}^{\text{V}} x_{\text{V}} + k_{\text{B}} T \left[x_{\text{V}} \ln x_{\text{V}} + (1 - x_{\text{V}}) \ln(1 - x_{\text{V}}) \right] \quad (25)$$

在一定溶质浓度的固溶体中,空位的平衡浓度 x_v^{eq}可通 过最小化形成自由能得到:

$$\frac{\partial \Delta G_{\text{atom}}^{V}}{\partial \Delta x_{v}} = 0 \tag{26}$$

结合式(25)和式(26)得到平衡空位浓度及其形成自由 能公式:

$$x_{\rm V}^{\rm eq} = \left[\exp\left(\frac{H_{\rm f}^{\rm V}}{k_{\rm B}T}\right) - 1 \right]^{-1}$$
(27)

$$\Delta G_{\text{atom}}^{\text{v}}\left(x_{\text{v}}^{\text{eq}}\right) = k_{\text{B}}T \ln \left[1 - \exp\left(-\frac{H_{\text{f}}^{\text{v}}}{k_{\text{B}}T}\right)\right]$$
(28)

由公式(16)可以看出,固溶体中空位的平衡浓度由空 位形成焓决定^[12]。

在一定温度下,溶质 B 在基体 A 中的溶解度 x_{B,A} 为在不发生第二相析出的情况下,溶质在溶剂中可达 到的最大浓度。当固溶体与金属间化合物处于相平衡 状态时,体系的混合自由能为:

$$\Delta G_{\text{atom}}^{\text{mix}}(x) = \frac{x_{\text{B,gs}} - x}{x_{\text{B,gs}} - x_{\text{B,A}}} \Delta G_{\text{atom}}(x_{\text{B,A}}) + \frac{x - x_{\text{B,A}}}{x_{\text{B,gs}} - x_{\text{B,A}}} \Delta G_{\text{atom}}^{\text{gs}}(x_{\text{B,gs}})$$
(29)

式中, $x_{B,gs}$ 和 $\Delta G_{atom}(x_{B,gs})$ 分别表示溶质和溶剂形成基态二元金属间化合物 $Al_{11}La_3(IMMM)$ 和 $Al_3Y(R-3M)$ 时的原子浓度和形成自由能。结合式(24)和式(29)可得到溶解度计算式为^[27]:

$$x_{\rm B,A} = \left[\exp(H_{\rm sol}/k_{\rm B}T) + 1 \right]^{-1}$$
(30)
在溶解度很小的情况下,

$$H_{\rm sol} = H_{\rm f}^{\rm B} - \Delta H_{\rm atom}^{\rm gs} / x_{\rm B,gs}^{\rm 0} + \Delta G_{\rm atom}^{\rm V} \left(x_{\rm V}^{\rm eq} \right) / x_{\rm B,gs}^{\rm 0} \qquad (31)$$

图 2 La 和 Y 在 Al 中溶解度的计算结果

Fig.2 Calculated solubilities of La and Y in Al as a function of temperature

通过 VASP 将公式(13)~(31)中所需的参数计算后,根据公式(30)计算出 La 和 Y 在 Al 中的溶解度随温度变化的计算结果,如图 2 所示。由图 2 可知,计算所得的溶解度比实验结果小^[28-30](La 在 913 K 时溶解度为 0.01 at%,Y 在 912 K 时溶解度为 0.045 at%)。这是由于,计算中采用了一定的近似处理,且计算仅考虑了纯超晶胞内的混合,而实验制备的二元合金为多晶体,存在大量的晶界和位错等缺陷,同时很难达到平衡冷却,这对于溶质的占位情况有较大影响^[31]。研究表明^[32,33],与相同稀土成分比例的 Al-La 二元合金相比,Al-Y 合金可以观察到更多的析出相,同时后者也具有较高的强度。根据本研究的计算结果,其原因可能是在高温区,Al 基体可以溶解较多的Y,在较低温度时,La和Y在Al 中的溶解度较为相近。因此,在一定的时效处理工艺后,Al-Y 合金中会出现更多的析出相。

3 结 论

1)利用基于密度泛函理论的 VASP 软件包计算了 Al-La 和 Al-Y 二元合金中金属间化合物的基态特征,确 定了 2 种二元合金中的稳定相和亚稳相。形成焓计算结 果表明,过饱和的 Al-La 和 Al-Y 二元体系中,优先析出 相分别为 Al₁₁La₃(IMMM)和 Al₃Y(R-3M),且 Al-La 和 Al-Y 合金中的最稳定相均为 Al₂RE 金属间化合物。对于 含有微量稀土元素的铝合金析出相,Al₃Y(R-3M)的体弹 模量、剪切模量和杨氏模量均高于 Al₁₁La₃(IMMM),而 Al₃Y(PM-3M)则具有和 Al₁₁La₃(IMM M)相近的弹性模 量。这表明,Al₃Y(R-3M)较 Al₃Y(PM-3M)和 Al₁₁La₃-(IMMM)具有更好的稳定性和强化效果。

2) 基于基态的计算结果,计算了 La 和 Y 在 Al 中的溶解度,与 La 相比,Y 在 Al 具有较高的溶解度, 这种趋势在高温区尤为明显。

参考文献 References

- [1] Okayasu M, Ota K, Takeuchi S *et al. Mater Sci Eng A*[J], 2014, 592: 189
- [2] Peter L, Tomasz W, Erwin P K et al. J Alloy Compds[J], 2014, 609: 129
- [3] Yang Junjun(杨军军), Nie Zharen(聂柞仁), Fu Jingbo(付静波) et al. Journal of Beijing University of Technology(北京工业 大学学报)[J], 2002, 28(4): 500
- [4] Pardo A, Feliú S J, Merino M C et al. Appl Surf Sci[J], 2007, 254: 586
- [5] Marsha E V D, Richard A K, Joseph R C et al. Acta Mater[J], 2009, 57: 4081
- [6] Richard A K, David C D, David N S. Acta Mater[J], 2009, 57: 4022
- [7] Wang Haiyan(王海燕), Gao Xueyun(高雪云), Ren Huiping(任慧平) et al. Acta Physica Sinica(物理学报)[J], 2014, 63: 148 101
- [8] Ravi C, Wolverton C, Ozoliņš V. Euro phys Lett[J], 2006, 73: 719
- [9] Xie Y P, Zhao S J. Comput Mater Sci[J], 2012, 63: 329
- [10] Shigenobu O, Ju L, Sidney Y I. Science[J], 2002, 298: 807
- [11] Zhang Hui(张 会), Wang Shaoqing(王绍青). Acta Metallurgica Sinica(金属学报)[J], 2012, 48(7): 889
- [12] Korzhavyi P A, Ruban A V, Lozovoi A Y et al. Phys Rev B[J], 2000, 61: 6003
- [13] Massalski T B, Okamoto H. Binary Alloy Phase Diagrams[M]. Ohio: ASM international, 1990: 471
- [14] Michael C G, Anthony D R, Michael W. Phys Rev B[J], 2007, 75: 174 120
- [15] Colinet C, Pasturel A. J Chem Thermodyn[J], 1985, 17: 1133
- [16] Saccone A, Cacciamani G, Macciò D et al. Intermetallics[J],

1998, 6: 201

- [17] Zhang X D, Wang S Q. Comput Mater Sci[J], 2014, 90: 56
- [18] Kang Y B, Pelton A D, Chartrand P et al. Calphad[J], 2008, 32: 413
- [19] Iandelli A, Olcese G L. J Less Common Metals[J],1985, 111: 145
- [20] Burzo E, Lucaci P, Gratz E. Solid State Communications[J], 1989, 72(4): 397
- [21] Zhang Y Z, Gao H Y, Kuai Y et al. Mater Charact[J] 2013, 86: 1
- [22] Hu Jieqiong(胡洁琼), Xie Ming(谢明), Zhang Jieming(张吉明) et al. Acta Physica Sinica(物理学报)[J], 2013, 62: 247 102
- [23] Duan Y H, Sun Y, Peng M J et al. J Alloy Compd[J], 2014, 585: 587
- [24] Beckstein O, Klepeis J E, Hart G L W et al. Phys Rev B[J], 2001, 63: 134 112
- [25] Mishin Y, Herzig C. Acta Mater[J], 2000, 48: 589
- [26] Clouet E, Sanchez J M. Phys Rev B[J], 2002, 95: 094 105
- [27] Roman V C, Stefano C. Acta Mater[J], 2009, 57: 5314
- [28] Ning Yuantao(宁远涛), Zhou Xinming(周新铭), Dai Hong(戴红). Acta Metallurgica Sinica(金属学报)[J], 1992, 28(1): 96
- [29] Zhou S H, Napolitano R E. Acta Mater[J], 2006, 54: 831
- [30] Li Guirong(李桂荣), Wang Hongming(王宏明), Zhao Yutao (赵玉涛) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2010, 39(1): 80
- [31] Zhang S J, Kontsevoi O Y, Freeman A J et al. Acta Mater[J], 2011, 59: 6155
- [32] Zhang X D, Wang S Q. Comput Mater Sci[J], 2014, 90: 56
- [33] Harada Y, Dunand D C. Intermetallics[J], 2009, 17: 17

First-principles of Phase Stability and Solubility of Al-RE (La, Y) Alloy

Wang Haiyan^{1,2}, Gao Xueyun³, Zeng Jianmin¹, Ren Huiping², Zhao Yanjun¹

(1. Guangxi Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China)

(2. Inner Mongolia University of Science and Technology, Baotou 014010, China)

(3. Beris Engineering and Research Corporation, Baotou 014010, China)

Abstract: The appropriate ground states of the Al-La and Al-Y binary alloys were calculated by the first-principles method based on density functional theory, and the solubility of La and Y elements in Al were discussed, as well as the plastic modulus of the priority RE precipitates. The results show that for the supersaturated solid solution of Al-La and Al-Y, the priority precipitates are Al₁₁La₃(IMMM) and Al₃Y(R-3M), respectively, and the most stable phase of Al-La and Al-Y is Al₂RE intermetallic compound. Among the three common precipitates in the experiment, Al₃Y(R-3M), Al₃Y(PM-3M) and Al₁₁La₃(IMMM)), Al₃Y(R-3M) has the highest stability and strengthening capability. Finally, the difference of the calculated solubility for La and Y in Al indicates that Y has a high solubility limit. **Key words:** rear earth; Al; solubility; precipitates; first-principles

Corresponding author: Wang Haiyan, Candidate for Ph. D., Associate Professor, School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China, Tel: 0086-472-5951572, E-mail: windflower126@163.com