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Abstract: According to the sections of sintered junction of two metal fibers, which are oval-oval geometry structure in different 

directions, an oval-oval model was developed based on the traditional surface diffusion mathematical model. This model was 

numerically solved by a level set method to achieve the 2D simulations of two sintered metal fibers. Moreover, the 3D reconstitution 

method was proposed to depict the complex 3D geometrical structure of sintered junction. The 2D simulations and 3D reconstitution 

results of two metal fibers with the fiber angle 30° well agree with the experimental ones, which imply that the 2D model and 3D 

reconstitution method are correct. In addition, the numerical simulation results show that the growth rate of sintered neck along the 

directions taken from the bisector of obtuse angle to the bisector of acute angle is increased. 
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Porous metal fiber materials are the third generation po-

rous metal materials. Due to their filtration separation, en-

ergy absorption, sound absorption, efficient combustion, 

enhanced heat and mass transfer, the porous metal fiber 

materials have been widely used in the fields of electronics, 

chemicals, textiles, machinery, food and medicine 
[1-3]

. 

Previously, researchers have carried out some work on 

the sintering mechanism of the porous metal fiber materials. 

In the 1960s, Pranatis et al.
[4]

 studied the sintering mecha-

nism of metal fibers and found the significant difference 

about sintering mechanism between metal fiber and metal 

powder. The main sintering mechanism of the metal powder 

is surface diffusion, while that of metal fiber is the com-

bined action of surface diffusion and volume diffusion. 

Bal’shin et al. 
[5]

 investigated the sintering shrinkage of 

metal fiber, and found the elastic strain energy of metal fi-

ber could strongly affect the process of sintering shrinkage. 

Kostornov et al.
[6-8]

 systematically studied the sintering 

process of metal fiber with different materials and wire 

diameters. In addition, he studied the sintering mechanism 

of metal fiber according to the theory of viscous flow of 

sintered metal powder. Recently, some researchers focused 

on the preparation and application of the porous metal fiber 

materials 
[9-11]

. Tang et al.
[12]

 studied the sound absorbing 

properties of stainless steel fiber porous materials, and 

found that the sound absorption coefficient increases with 

increasing porosity and thickness of fibrous materials. 

Wang et al.
[13]

 studied the fractal dimension for porous 

metal materials of FeCrAl fiber, and found that the fractal 

dimension decreases with the increase of the magnification 

and increases continuously with enhancing the porosity. 

Zhou et al.
[14]

 established both three- and four-point bend-

ing setup to characterize the bending properties of porous 

metal fiber sintered sheet, and found that both three- and 

four-point bending strength were decreased with increasing 

porosity ranging from 70% to 90% and higher sintering 

temperature produced higher bending strength for the po-

rous metal fiber sintered sheet sintered in the temperature 

range of 700~1000 °C. Xu et al.
[15]

 studied the consolidation 

process of SiCf/Ti-6Al-4V composites by matrix-coated 
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fiber method via hot pressing using finite element modeling, 

and found that the higher fiber content will lower the con-

solidation rate. 
 

However, the studies on the formation of sintered neck of 

metal fibers does not make a breakthrough. Generally, the 

studies on metal fiber are mainly based on metal powder 

sintering theory. Unlike the completely symmetrical shape 

of metal powder, which can be characterized by ball-ball 

model or ball-plate model in two-dimensional space 
[16]

, the 

shape of metal fibers is very complex in three-dimensional 

space. Therefore, the metal fiber is represented by a cylin-

der to investigate the formation of sintered neck. 

In this study, based on the traditional surface diffusion 

model 
[17,

 
18]

, the 2D model of sintered metal fiber, which is 

called oval-oval model, will be developed to simulate the 

growth process of sintered neck with the fiber angle of 30° 

in every section. The 3D reconstitution method will be 

proposed to achieve the 3D simulation of sintered metal fi-

ber. The growth rate of sintered neck in different sections 

will be investigated by the numerical simulation results.  

1 Surface Diffusion Model and Level Set Method 

1.1 Surface diffusion model 

Surface diffusion results in mass flow along the fiber 

surface and hence changes surface morphology 
[17]

. Mass 

flow is generated by the surface chemical potential gradient 

which is proportional to the surface curvature. Hence, the 

surface flux is the result of the diffusion coefficient and 

the surface gradient of the curvature. Then the velocity of 

the surface normal to itself is proportional to the diver-

gence of the surface flux, which is the Laplacian of the 

curvature 
[18,19]

. Therefore, the mathematical model de-

scribing the surface movement introduced by Mullins 
[20]

 

can be expressed as,  

2

n

2

r K
B

t s

 


 
                                  (1) 

where rn is the normal vector of the surface, t represents 

time, K is the surface curvature, s is the arc length and B is a 

coefficient defined by 

s s
D

B
kT

 
                                   (2) 

where
s

D is the surface diffusion coefficient,  is the surface 

free energy per unit area,  represents the atomic vol-

ume,
s

 is the surface diffusive width, k is the Boltzmann’s 

constant and T is the absolute temperature. 

1.2  Level set method 

The mathematical model developed by Mullins can be 

solved by method of lines 
[18]

 or finite difference method 
[1

 
9]

. 

The main advantage of these methods is the straightforward 

interface definition. However, its main disadvantage is that 

they are difficult to capture topological changes. In this 

paper, the level set method was used to solve the mathe-

matical model. Level Set method was proposed by Osher 

and Sethian 
[21]

 and further developed during the past sever-

al years. The method can be used to capture the interface 

rather than track it and makes it possible to capture drastic 

changes in the shape of curves and even topology changes. 

In addition, the method is stable, and the equations are not 

unnecessarily stiff and geometric quantities, so that the 

curvature can be computed easily 
[22-25]

. 

The basic idea of the method is embedding the interface 

into a higher dimensional space. Considering a closed 

moving interface ( )t in 2
R , let ( )t be the region that is 

enclosed by ( )t . The auxiliary function is ( , , )x y t , which 

is called the level set function, and this function is Lipchitz 

continuous and satisfies the following conditions: 

2
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Conversely, if ( , , )x y t is known, the interface can be lo-

cated by finding the zero level set of ( , , )x y t . That 

is,  ( ) : ( , , ) 0t x x y t   . So moving the interface is 

equivalent to updating ( , , )x y t , which can be done by 

solving a Hamilton-Jacobi-type equation. 

The Hamilton-Jacobi-type equation has the form, 

0

( , ) 0

( , , 0) ( , )

t x y
H

x y x y
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                            (4) 

If ( , )
x y

H F    , Eq.(4) is the evolution function. The 

normal velocity F is considered to be a function of spatial de-

rivatives of ( , , )x y t . In many applications, F is a function of 

the curvature K and its spatial derivatives. The curvature can 

be computed via the level set function ( , , )x y t as,  

K n   
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Here n is the normal vector which coincides with the unit 

normal vector for the surface on zero level set. According to 

Eq. (5), the expression of K can be expressed as: 
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In the case of surface diffusion, 
2
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K
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The second order derivative of curvature can be expressed 

as: 
2
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The second order derivative of curvature is a nonlinear term 
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involving fourth order derivative of function  . 

2 Oval-oval Model Established by Level Set 

Method 

2.1  Oval-oval model 

In Fig.  1, it is assumed that the fiber angle is  , and the 

bisector of obtuse angle represents polar axis. The polar 

coordinate system is established by rotating the polar axis 

counterclockwise, and  represents the angle in polar coor-

dinates. The sections of the sintered junction are taken from 

every direction, and they may be circular, oval and rectan-

gular. In Fig.2, Cartesian coordinates system is established 

in the cross section, and
1

O represents the oval in the 

above,
2

O represents the oval under
1

O ,
3

O represents the cir-

cle which is tangent to
1

O and
2

O simultaneously.  is the ra-

dius of
3

O , a is the radius of metal fiber and r is the length of 

sintered neck. 

According to the geometric relationship shown in Fig. 1 

and Fig. 2, the functions of
1O and

2
O can be expressed as: 

1O :   

2 2

2

2 2

( )
cos ( ) 1

2

x y a

a a





                 （9） 

2
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



                （10） 

where the change of ( 0 π  ) describes the cross sec-

tion in every direction. 

It is assumed that surface diffusion is responsible for 

surface movement. Then the velocity of the surface normal 

to itself is proportional to the divergence of the surface flux, 

which is the Laplacian of the curvature. The implicit function 

( , , )x y t  represents the interface and its changes make the 

 

 

 

 

 

 

 

 

 

 

Fig. 1  System of polar coordinates 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Section of two metal fibers 

interface evolve. In order to define the evolution of the 

function ( , , )x y t , the evolution equation can be expressed 

as, 

F   ,  given ( , , 0)x y t                    (11) 

where
2

2

K
F B

s


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
. This is coincided with Eq. (1). 

For each cross section, the level set function is defined 

as: 

2
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where ( )t is the curve (interface) determined by Eq.(9) and 

Eq.(10), and ( )t represents the inner region surrounded by 

interface, as shown in Fig.3. 

Based on the oval-oval model proposed above, the algo-

rithm to solve this model is similar to what proposed in 

Ref.[24]. 

2.2  3D reconstitution  

The oval-oval model is solved by level set method to ob-

tain the evolution of the interfaces in different directions, 

and then the 3D geometry structure of sintered neck is es-

tablished by reconstituting these interfaces.  

The process of 3D reconstitution is expressed as follows: 

Step 1. Extract the position coordinates of interface ( )t . 

According to the 2D numerical simulation results in every 

section, the position coordinates of interface, which are ex-

pressed as ( ', ')x y , can be extracted from these sections. 

Step 2. Coordinate transformation. According to the co-

ordinates obtained from Step 1, these coordinates can be 

transformed to 3D coordinates ( , , )x y z . The coordinate 

transformation formulation can be expressed as follows: 

' cos

'sin

'

x x

y x

z y

















  

where represents the angle in polar coordinates.  

Step 3. Plot 3D figure. According to the 3D coordinates 

obtained from Step 2, the sections can be plotted in a 3D 

figure. The 3D geometry structure can be reconstituted 

when all sections are plotted in the 3D figure. 

 

 

 

 

 

 

 

 

Fig. 3  Internal area and interface of the cross section 
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3 Numerical Simulation Results and Compari-

sons 

The growth process of sintered neck of two metal fibers 

with the fiber angle of 30° is simulated by surface diffusion.  

The speed function of curve evolution is
2

2

K
F B

s


 


,  

where 1B  . The 2D simulation and 3D reconstitution are 

implemented using Matlab. The meshing is 500 500 , 

and 1x y    . The radius of metal fiber is 100.  

3.1  Numerical simulation results  

3.1.1  2D simulation result 

Twelve sections are taken from the bisector of obtuse an-

gle (α=0°) to the bisector of obtuse angle on the other side 

(α=180°) to compute. Actually, the sections taken from the 

bisector of obtuse angle to the bisector of acute angle 

(α=90°) are rotational symmetry with the sections taken 

from the bisector of acute angle to the bisector of obtuse 

angle on the other side. Then the sections taken from the 

bisector of obtuse angle to the bisector of acute angle are 

shown in Fig.4. The step number of each figure is 1500, and 

the interface is marked every 300 steps. 

3.1.2  3D simulation result 

The 3D geometry structure is established by reconstitut-

ing the sections in different directions. When the evolution 

step number is 1000, the 3D geometry structure of two sin-

tered metal fibers with the fiber angle of 30° is shown in 

Fig.5. 

3.2  Comparisons with experimental results 

The experimental results are shown in Fig.  6, which are 

the sections of sintered metal fibers with different fiber an-

gles. Although the fiber angles are very difficult to deter-

mine exactly, comparing the numerical results (as shown in 

Fig. 4) with experimental ones (as shown in Fig.  6), it can be 

concluded that the numerical simulation results well agree 

with the experimental ones to some extent. Moreover, the 

3D simulation result of two sintered metal fibers with the 

fiber angle of 30° (as shown in Fig.  5) well agree with the 

experimental ones (as shown in Fig.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Section of two metal fibers with the fiber angle of 30°: (a) α=0° ( the section in the direction of the bisector of obtuse angle),    

(b) α=15°, (c) α=30°, (d) α=45°, (e) α=60°, (f) α=75° ( the section in the direction of the nether fiber), (g) α=90° ( the section in 

the direction of the bisector of acute angle) 

 

 

 

 

 

 

 

 

 

Fig. 5  Reconstructed 3D geometry structure of two sintered met-

al fibers with the fiber angle of 30° 

4 Discussions 

For two metal fibers with the fiber angle 30°, the sintered 

neck radius is plotted as a function of time in Fig.  8. The 

growth trend of neck radius along seven directions (from 

the bisector of obtuse angle to the bisector of acute angle) is 

same. In the initial stage of sintering, the growth rate of 

sintered neck is fast and the sintered neck radius almost 

grows linearly with the time extending. When the time t 

exceeds 30, the growth rate slows down gradually, and  
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Fig. 6  Sections morphology of sintered metal fibers (a) and corresponding high magnification morphologies (b~e) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  Sintered neck of two metal fibers with the fiber angle  

of 30° 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8  Sintered neck radius vs. time for metal fibers with the  

fiber angle of 30° 

 

it is close to 0. The neck radius along the bisector of acute 

angle is the largest; however, that along the bisector of ob-

tuse angle is the smallest. 

Based on the numerical simulation results shown in Fig. 

4 and Fig.8, the growth rate of sintered neck along the di-

rections taken from the bisector of obtuse angle to the bi-

sector of acute angle (0 90 )     is increased. Hence, 

it can be concluded that the closer to the bisector of acute 

angle the direction is, the faster the growth rate of sintered 

neck is, and the larger the sintered neck radius is. Also, the 

conclusion well agrees with the general experiment rule.  

According to the analysis above, the simulations imple-

mented by the 2D model and 3D reconstitution well agree 

with experimental results. Therefore, the 2D model and the 

corresponding numerical method are correct, and the 3D 

reconstitution method is reasonable.  

5 Conclusions 

1) Based on the traditional surface diffusion mathematical 

model, the oval-oval model is developed to achieve the 2D 

simulations of sintered metal fibers with the fiber angle 30°. 

2) In order to describe the sintering progress better, the 

level set method is adopted to solve the oval-oval model. 

The 3D geometrical structure of sintered neck of two metal 

fibers is very complex, which is not as simple as it of two 

metal powders.  

3) The 3D reconstitution method is proposed to depict the 

complex 3D geometrical structure. The 2D numerical sim-

ulation results well agree with the experimental ones, and 

the 3D reconstitution result well depicts the geometrical 

structure. Therefore, the 2D model and the 3D reconstitu-

tion method are correct. In addition, according to the simu-

lation results, the growth rate of sintered neck along the di-

rections taken from the bisector of obtuse angle to the bi-

sector of acute angle is increased. 
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基于表面扩散机制金属纤维烧结的二维模型和三维重构 

 

谌东东 1，郑洲顺 1，王建忠 2，汤慧萍 2
 

(1. 中南大学，湖南 长沙 410083) 

(2. 西北有色金属研究院 金属多孔材料国家重点实验室，陕西 西安 710016)  

 

摘  要：根据金属纤维烧结结点在不同方向的椭圆-椭圆结构，基于传统的表面扩散数学模型，建立了椭圆-椭圆模型。用水平集方法对

模型进行数值求解，实现了金属纤维的二维模拟。此外，提出了三维重构方法描述烧结金属纤维复杂的三维几何结构。夹角为30° 的 2 

根金属纤维烧结的二维模拟和三维重构结果与实验结果相符，这说明本研究的二维模型和三维重构方法是正确的。另外，数值模拟结果

表明：从 2 根金属纤维的钝角平分线方向到锐角平分线方向，烧结颈的生长速率增大。 

关键词：二维模型；三维重构；金属纤维；烧结颈；表面扩散 
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