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Abstract: The model for single fiber push-out test was developed to evaluate the fracture toughness GIIc of the fiber/matrix interface 

in titanium alloys reinforced by SiC monofilaments. Theoretical solution to GIIc was obtained from fracture mechanics, and the 

effects of several key factors such as the applied stress needed for crack advance, crack length, and interfacial frictional shear stress 

were discussed. The predictions by the model were compared with the previous finite element analysis results for the interfacial 

toughness of the composites including Sigma1240/Ti-6-4, SCS/Ti-6-4, SCS/Timetal 834 and SCS/Timetal 21s. The results show that 

the model can reliably predict the interfacial toughness of the titanium matrix composites, in which interfacial debonding usually 

occurs at the bottom of the samples. 
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SiC fiber-reinforced titanium-matrix composites (TMCs) 

can be widely used in aerospace and automobile industries 

due to their low density, high performance, high specific 

strength and stiffness at room and elevated temperatures
[1-7]

. 

The behavior of fiber/matrix interfaces plays an important 

role in the successful applications of these composites. 

Push-out test has been introduced as an important 

experimental techniques for characterizing the interfacial 

performance of this class of composites owing to its 

simplicity of preparing the specimen and conducting the 

experiment. Typical push-out test curve and the schematic 

of the test is shown in Fig.1
[8-10]

. In Fig.1b, the abscissa 

represents the length of fiber, the ordinate represents the 

load P, Pi represents an initial debonding load, Pmax 

represents the maximum external load, Pd is any load in 

between Pi and Pmax, and Pfr is the applied load which is 

used to overcome frictional sliding after complete 

debonding. 

Push-out test at first has been widely used in the study of 

interfaces in ceramic matrix composites (CMCs)
[9,11]

. Compared 

with the CMCs, TMCs have relatively high bond strength and 

residual clamping stresses at the interface, which require thinner 

slices of composites so that SiC fibers can be moved before the 

indenter fractures or the fiber crushes
[12]

. Moreover, for almost 

all of this thin slice push-out test of TMCs, it has been observed 

that the interfacial crack initiates and propagates from the 

bottom of the specimen due to thermal residual stresses at the 

interface
[8,12-15]

. This crack initiation in TMCs is completely 

different from CMCs where crack initiates from the top of the 

specimen. Obviously, the failure mechanism of the push-out in 

TMCs and CMCs is different, and it is therefore needed to 

develop theoretical models for TMCs in order to understand 

their interfacial mechanical properties. 

The fracture mechanics approach is very attractive in the 

analysis of the push-out problem because it can address the 

crack propagation during the process of the fiber push-out 

and energies of the interfacial debonding
[16-19]

. Majumdar
[20]

 

proposed that interfacial fracture toughness is the change in 

strain energy of the system and the work done by the 

loading system due to crack propagation. Following  
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Fig.1  Single fiber push-out test: (a) the schematic
[9]

 and      

(b) typical load-displacement curve
[8]  

 

Majumdar’s approach
[20]

, Kalton
[21]

 took into account the 

work done in frictional sliding at the interface. All above 

works are for situations of interfacial debonding on the top 

of the samples. However, for TMCs, the crack is likely to 

have propagated from bottom to top.  

In this paper, an analytical model has been developed for 

the situations where crack propagates from the bottom face 

during push-out test. The paper is arranged as follows. In 

section 2, the solution to GIIc is deduced based on Kalton’s 

basic energy balance equation. In section 3, several key 

factors that determine the critical applied stress necessary 

for crack growth, such as crack length and the interfacial 

frictional shear stress, are discussed based on the models. In 

section 4, GIIc of the composites Sigma1240/Ti-6-4, 

SCS/Ti-6-4, SCS/Timetal 834 and SCS/Timetal 21s are 

calculated by incorporating the load/displacement curves of 

push-out test and the thermal residual stresses to validate 

the prediction of the present theoretical model.  

1  Analysis of Interfacial Fracture Toughness 

1.1  Synopsis for the analytical models  

Fig.2 shows the geometric representation of the 

fiber/matrix cylinder model, where rf is fiber radius and L is 

thickness of specimen. At the top end of the specimen, z = 0, 

the fiber is loaded by a force P, and at the other end, z = L, 

the fiber is free and the matrix is fixed. An interfacial  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2  Idealized fiber push-out model 

 

crack is assumed to initiate at z = L (bottom) surface and 

propagates from the bottom face to the top face. It is also 

assumed that the stresses within the matrix and the 

compliance of the matrix are neglected, and the stresses 

within the fiber are independent of radial location. The 

interfacial frictional shear stress τ follows Coulomb 

frictional law: 

0 , ΔTrτ τ μσ                                  (1) 

where τ0 is the constant friction, μ is the coefficient of 

friction and σr, ΔT is the radial thermal residual stress. This 

relation was used by Jero
[22]

 and Mackin
[23]

 in earlier work, 

and later was adopted widely by many other workers
[21,24]

. 

The basic energy balance equation used here is
[21]

:  

ex se fr
IIc

d d d

d d d

U U U
G

A A A
                      (2) 

where dA is the incremental increase in crack surface area, 

dUex is the work done by the loading system, dUse is the 

change in strain energy of the system due to crack advance, 

and dUfr is the work done in frictional sliding at the 

interface. All strain energies are neglected in the matrix due 

to their small values
[21]

. 

1.2  Expression of interfacial fracture toughness 

It is assumed that the interface bonds perfectly at the two 

free end surface. In order to analyze the progressive 

debonding portion of the load/displacement curve of 

push-out test, the specimen is divided into three different 

regions, namely, a debonding region I (L-l ≤ z ≤ L), a crack 

tip region II (L- l ≤ z ≤ l1) and a bonded region III (l1 ≤ z ≤ 

0), as shown in Fig.3. By the shear-lag approach, the axial 

equilibrium equation in the fiber is
[24]

:  

f

f

d ( ) 2

d

σ z τ

z r
 

                            (3) 

where σf(z) is the axial stress in the fiber. 

In region I, interfacial debonding has occurred, and the axial 

stress in the fiber comes from only the frictional sliding 

resistance at the interface since this region locates the bottom  
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Fig.3  Schematic representation of the axial stress in the fiber  

during push-out test 

 

end of the specimen. The axial stress in the fiber is obtained by 

integrating equation (3) from L to z and is given by  

f

I

)(2
)(

r

zLτ
zσ


                            (4) 

The axial stress in the fiber is different from that of crack 

initiation at the top of the specimen in this region. 

In region II, the axial stress is not well-defined in the 

fiber because its distribution shows singularity due to the 

effect of crack tip. Moreover, the region is very small and 

any effect of crack length and P on this distribution is 

neglected
[20,21]

. 

In region III, it is assumed that the axial stress in the 

fiber is independent of radial location and axial location. 

Combining the applied stress σP and the thermal residual 

stress yields: 

ΔT,PIII
)(

z
σσzσ                            (5) 

where σP is the applied stress induced by load P, and σz,ΔT is 

the axial thermal residual stress in the fiber. It is seen from 

equations (4) and (5) that the axial stress in the fiber falls 

from σP – σz,ΔT at the top end to zero at the bottom end of 

the specimen. 

The expressions of dUex，dUse and dUfr in equation (2) 

can be obtained from equations (4) and (5), and the process 

is detailed in Appendix. These terms can be expressed as 

follows： 

ex f
P,c P,c ,ΔT

f f

d 2
( )

d 2
z

U r l

A E r


                   (6) 

2 2
2se f

P,c ,ΔT 2

f f

d 4
[( ) ]

d 4
z

U r l

A E r


               (7) 

2 2

fr f
P,c ,ΔT 2

f f f

d 4 8
[( ) ]

d 4
z

U r l l

A E r r

 
   

        (8) 

where σP,c is the critical applied stress necessary for crack 

advance, and Ef is the Young's modulus of the fiber.  

Substituting equations (6), (7) and (8) into equation (2) 

gives the GIIc:  

2 2f
IIc P,c ,ΔT

f f f

4 2
[( ) ( ) ]

4
z

r l l
G

E r r

 
             (9) 

Compared with Kalton’s model (equation (10)), in which 

interfacial debonding initiates at the top of the specimen
[21]

, 

it is clear that there is some difference between equations (9) 

and (10) because the axial stress distribution in the fiber is 

different for the two situations of crack initiation at the 

bottom and crack initiation at the top. 

2f
IIc P,c ,ΔT

f f

2
( )

4
z

r l
G

E r


                  (10) 

2  Discussions 

A set of parameters listed in Table 1 is employed to 

examine the predictions of the models presented above. All 

these materials are the common TMCs. The following 

analysis is based on equation (9). During push-out test, 

interfacial crack will advance as the strain energy release 

rate GII provided by driving force reaches GIIc, the 

interfacial fracture energy, at the crack tip. For a given 

value of GIIc, the critical applied stress σP,c necessary for 

crack growth can be solved by equation (9), as shown in Fig. 

4, σP,c is plotted as a function of GIIc for the three different 

crack lengths. Clearly, the σP,c required for crack advance 

grows continually as GIIc, and the stress required at the 

crack tip increases with the increasing of the crack length. 

It is caused by increased shielding of the crack tip provided 

by the frictional resistance to sliding.  

The relationship of σP,c and crack length is plotted in Fig. 

5 in four situations, namely, reference case, GIIc =40 J/m
-2

, 

σz,ΔT =–800 MPa and τ0 =–100 MPa. It can be seen that σP,c 

required for crack advance will become greater when one of 

GIIc, σz,ΔT and τ rises. An increase in GIIc inhibits crack 

growth, while increased frictional sliding resistance 

enhances the crack shielding effect. At the top end, the 

increased σz,ΔT in the fiber needs larger σP,c to inhibit the 

fiber to protrude the matrix. Among these factors, the 

critical applied stress is more sensitive to the interfacial 

frictional shear stress. 

 

Table 1  Reference set of parameters used to examine  

predictions of the analytical model 

Ef/ 

GPa 

 

rf/ 

μm 

σz,ΔT/ 

MPa 

σr,ΔT/ 

MPa 

τ0/ 

MPa 

GIIc/ 

J·m
-2

 

l0/ 

μm 
μ 

469 70 –500 –150 –50 20 10 0.3 
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Fig.4  Critical applied stress necessary for crack growth, plotted 

as a function of interfacial toughness GIIc, for three crack 

lengths 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5  Influence, from GIIc, σz,ΔT and τ0, on the applied stress 

necessary for crack advance as a function of crack length 

 

It follows, if deduced values of the interfacial toughness 

are to be reliable, the preparing sample and push-out test 

must be operated cautiously and some experimental values 

such as the applied stress, the initial debonding length must 

be accurately measured. 

3  Predictions and Validations 

The model is applied to predict the push-out behavior of 

several TMCs. The thermo-elastic parameters of the fibers 

and titanium alloys
[21,25-27]

 are listed in Table 2. The 

parametric values of the specimens, the thermal residual 

stresses σz,ΔT and the experimental data required for the 

models
[17,21,25,28]

 are shown in Table 3, where L denotes the 

thickness of specimen and l refers to the whole crack 

growth length. In this section, it is assumed that the l is 20 

μm and μ is chosen to be 0.3.  

The average thermal residual stresses are used since the 

specimen is thin, and are obtained by finite element method 

(ABAQUS). The analysis employs a fiber-matrix 2-D 

axisymmetric model, as shown in Fig.6a. In this model, 

Table 2  Thermo-elastic parameters of SiC and titanium alloy 

used in obtaining the thermal residual stresses by 

the finite element analysis and the interfacial 

toughness by the expressions from the model 

Material system E/GPa υ α/×10
-6

 Ref. 

SCS-6 469 0.17 4.0 [25] 

Sigma1240 400 0.21 4.0 [21] 

Ti-6-4 115~30 0.36 7.3~10 [21] 

Timetal 834 115~70 0.3 11.24 [25] 

Timetal 21 98.2~40 0.35 6.81~9.5 [26,27] 

 

Table 3  Parameters of specimens, the thermal stresses 

obtained by the finite element analysis and data 

obtained from the push-out test 

Material 

system 

T/ 
°
C 

rf/ 

μm 

L/ 

μm 

σz,ΔT/ 

MPa 

Pmax/ 

(Exp.) 

[Ref.] 

N 

Τ/ 

(Exp.) 

[Ref.] 

MPa 

Sigma1240/Ti-6-4 23 50 200 -318
[21]

 8.1
[21] 

-127 

Sigma1240/Ti-6-4 600 50 200 -21
[21]

 3.7
[21] 

-28.7 

SCS-6/Ti-6-4 23 71 550 -815 28
[28]

 -448.6 

SCS-6/Timetal 834 23 71 400 -839 31
[26]

 -717.3 

SCS-6/Timetal 834 530 71 400 -175 9.1
[26]

 -141 

SCS-6/Timetal 21s 23 70 530 -736 24
[17]

 -379.7 

 

Table 4  Interfacial toughness simulated by other workers 

and calculated by Kalton’s equation (3) and 

equation (9) 

Material 

System 

T/ 
°
C  

GIIc/ 

(Simulation) 

J·m
-2

 

GIIc/ 

(Kalton) 

J·m
-2

 

GIIc/ 

(Eq. 9) 

J·m
-2

 

Sigma1240/Ti-6-4 23  11.6 19.9 

Sigma1240/Ti-6-4 600  5.57 5.51 

SCS-6/Ti-6-4 23 52.5
[30]

  18.6 48.4 

SCS-6/Timetal 834 23 40
[25]

 19.4 42.9 

SCS-6/Timetal 834 530 5
[25]

 3.9 6.2 

SCS-6/Timetal 21s 23 50-70
[17]

 13.7 37.26 

 

the f iber and matrix are  described with 4 -nodes 

axisymmetric elements while the interface defined with 

4-nodes cohesive elements generated by duplicating nodes 

at the interface on fiber and matrix sides. The fiber and 

matrix element size selected in both r-direction and  
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Fig.6  Axisymmetric finite element model (a), boundary conditions of the first step (b), and the boundary conditions of the second step (c) 

 

z-direction are 2 μm. The interphase element size in 

r-direction is 0 thickness, and is 2 μm in z-direction. The 

finite element analysis involves two major steps. The 

boundary conditions in the two steps are shown in Fig 6b 

and 6c. In the first step, the stress-free temperature of the 

alloy Ti-6Al-4V
[21]

, Timetal 834
[25]

 and Timetal 21s
[29]

 

selected are 800, 770, and 875 
°
C, respectively.  

The interfacial frictional shear stress τ can be evaluated 

by the experimental data and the following equations 

f

1 d

2π d

P

r z
                                 (11) 

where dP/d z  is the slope of the approximately linear region 

of the load/displacement curve in the push-out test. 

Then the simulated results and other values in Table 3 

are substituted into Equ.(9) and the results
[17,25,30]

 

calculated are listed in Table 4. As expected, the GIIc 

values of the composites SCS-6/Ti-6Al-4V and 

SCS-6/Timetal 834 are in good agreement with the 

previous simulated data, while, for the composite 

SCS-6/Timetal 21s, there is a significant difference in 

the two results (present and previous), it may be induced 

by the error of τ which is caused owing to the incomplete 

push-out load/displacement curve. The results from the 

present models are higher than that of those calculated 

by Kalton’s equation (3). Apparently, it is not adequate to 

evaluate GIIc of TMCs for the case of crack initiation at 

the bottom by the model for the crack initiation at the top 

since the axial stress distribution in the fiber in every 

region is different in the two cases.  

4 Conclusions 

1) The model for single fiber push-out test, in which 

debonding initiates at the bottom of the samples, is 

developed to evaluate the interfacial fracture toughness GIIc 

of TMCs. The solution to GIIc is different from that for the 

case of crack initiation at the top since the axial stress 

distributions are different in the fiber. The critical applied 

stresses necessary for crack growth increases with 

increasing the crack length, interfacial fracture toughness, 

interfacial frictional shear stresses and axial thermal 

residual stress.  

2) In order to validate the predictions of the models, the 

interfacial fracture toughness of the composites 

Sigma1240/Ti-6-4, SCS/Ti-6-4, SCS/Timetal 834 and 

SCS/Timetal 21s are obtained by applying the GIIc solutions, 

and the predictions are in good agreement with finite 

element analysis results. Thus, the models can be used to 

predict the interfacial toughness of TMCs for the cases 

where crack initiate at the bottom of the specimens. 
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Appendix 

The displacement of the loading point is given, as following 

1

0

1 2 3 P,c ,ΔT

f f f

1 2 ( ) 1
d 0 ( )d

L l

z
L l

L z
z z

E r E


     

 
       

                        

     (1a)  

It followed that, here l1≈L－l ,  

2

f
1 2 3 P,c ,ΔT

f f

π 2
d d d d ( )dz

r l
l

E r


                                                           (1b) 

2

fπP r P,c
, the work done by the loading system is 

2

f
ex P,c P,c ,ΔT

f f

π 2
d d ( )dz

r l
U P l

E r


                                                                 (1c) 

Similarly, we obtained 

1

0
2

se I I III III f

1 1
( ) ( )d 0 ( ) ( )d             d π d  

2 2

L l
z z z z

L l
U z z V z z V V r z   



                                      (2a) 

2 2 2
2f

se P,c ,ΔT 2

f f

π 4
d [( ) ]d

2
z

r l
U l

E r


                                                              (2b) 

The term Ufr is 

fr
Area

( ) dU z A                                                                             (3a)

  

final initial P ΔT

f

2 ( )
( ) ( )d [ ( )]d

z L l

,c z,
L l z

τ L z
z ε ε z σ σ z

r







                                            (3b) 

2

,

f f

1
( ) { [( ) ( )] ( )( )}zz L z l L l L l z

E r


         P,c ΔT

                                      (3c) 

It is noted that the A.3d is valid when the equation A.3c is satisfied

 

P,c ,ΔT

f

2
z

l

r


                                                                                 (3d)

 

The Ufr is obtained by substituting equation 3b into 3a, as follows  
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纤维增强钛基复合材料界面断裂韧性的顶出法研究 
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摘  要：为了估计单向SiC纤维增强钛基复合材料的界面断裂韧性GIIc，提出了一个关于单根纤维顶出试验的新模型。在该模型中，界面

脱粘开始于试样的底端面。以断裂力学为基础推导出了GIIc 的理论公式，并且讨论了几个关键因素对GIIc的影响，如裂纹扩展所需的外

加应力，裂纹长度以及界面的摩擦剪切应力。并且运用此模型预测了复合材料 Sigma1240/Ti-6-4, SCS/Ti-6-4, SCS/Timetal 834 和 

SCS/Timetal 21s 的界面断裂韧性，并与以前的有限元结果进行了比较。结果显示，对于脱粘起始于试样的底端面的顶出试验，该模型

能较可靠地预测钛基复合材料的界面断裂韧性。 

关键词：钛基复合材料；界面断裂韧性；顶出试验；剪滞方法 
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