Y₂O₃含量对激光熔覆 0.3C-18Cr 合金涂层 组织和性能的影响

郭铁明¹,蒲亚博¹,张瑞华²,栗子林²,李强¹

(1. 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050)(2. 阳江市五金刀剪产业技术研究院,广东 阳江 529533)

摘 要:在 3Cr14 不锈钢基体上激光熔覆制备 Y₂O₃含量不同的 0.3C-18Cr 合金粉末复合涂层。采用金相显微镜(OM)、 扫描电子显微镜(SEM)、X 射线衍射(XRD)仪、显微硬度仪等设备研究了不同 Y₂O₃含量对熔覆层的微观结构、相组成 及硬度的影响。结果表明,未添加 Y₂O₃试样熔覆层有较多孔洞,熔覆层组织由晶内铁素体、晶界分布的上贝氏体及少 量马氏体组成:加入 Y₂O₃ 后熔覆层枝晶长度减小且数量减少,枝晶尖端钝化且径向粗化,长径比减小,同时熔覆层气 孔减少,熔覆层得到净化:熔覆层组织由板条马氏体+晶界少量贝氏体构成,且随 Y₂O₃ 含量增加,板条马氏体略有粗 化,贝氏体数量明显减少,贝氏体碳化物的碳浓度增大,碳化物类型由低碳型碳化物向高碳型碳化物转变。加入 Y₂O₃ 后,熔覆层显微硬度显著提高,添加质量分数 2% Y₂O₃ 时熔覆层的硬化效果最佳,其最高显微硬度比未添加 Y₂O₃ 时的 平均显微硬度(HV_{0.2})增加 1600 MPa。

关键词: 激光熔覆; Y2O3含量; 组织; 性能

中图法分类号: TG174.44 文献标识码: A 文章编号: 1002-185X(2019)11-3643-08

激光熔覆是一种有效的表面改性技术,可以显著 提高涂层强度、耐磨、耐蚀性能^[1,2]。目前,利用激光 熔覆技术已经开发出了氧化铝涂层、TiC 涂层、WC/Ni 涂层、准晶和非晶混合涂层等一大批性能优异的复合 材料涂层。但是由于涂层和基体热膨胀系数等不同, 激光熔覆涂层容易产生气孔、裂纹、晶粒粗大、界面 结合力差等问题^[3-6]。

我国稀土资源丰富,稀土元素或稀土氧化物具有 净化钢液、细化晶粒、微合金化等作用,常用于冶金、 电子、化学工业等领域。由于其自身优良的性能,用 于表面工程是稀土利用的重要方面,能够显著提高涂 层的耐磨、耐蚀、韧性和抗氧化等性能^[7-11]。具有更 高化学活性的稀土元素Y在冶金工业中有了更多的应 用。Radu等人^[12]研究了Y₂O₃对Stellite 21 合金的影 响,发现Y₂O₃可以促进应力诱发马氏体相变并提高合 金的耐磨性;Riffard等人^[13]发现Y离子可以提高 304 不锈钢表面的抗氧化性能;王成磊等人^[14]加入稀土 Y₂O₃在激光熔覆过程中使 Ni60 合金层晶粒细化、组 织改善,并明显提高了合金层的耐腐蚀性能。然而对 于稀土氧化物Y₂O₃在激光熔覆低碳合金粉末涂层组 织和性能方面的研究很少。

本研究在 0.3C-18Cr 合金粉末中加入不同含量的稀 土氧化物 Y₂O₃ 制备成复合粉末,利用优化后的激光熔 覆工艺参数,在 3Cr14 不锈钢基体上制备高性能复合 粉末涂层。研究了激光熔覆过程中 Y₂O₃ 对熔覆层微观 组织、显微硬度的影响,并分析了 Y₂O₃ 的作用机理。

1 实 验

试验用母材为经过 1050 ℃淬火、空冷后的 3Cr14 不锈钢,其洛氏硬度达到 50 HRC 左右,将其用激光切 割成尺寸为 100 mm×30 mm×3 mm 的矩形试样。熔覆 粉末以 0.3C-18Cr 合金粉末为基础粉末,选取粉末粒径 为 40~70 nm 的 Y₂O₃粉末,在基础粉末中分别加入质 量分数 1%、2%、3%、5%的 Y₂O₃粉末(粉末粒度 40~70 nm)制成复合粉末,用机械球磨混粉,球磨机转速 200 r/min,球料比 2:1,球磨时间 5 h。取粉后用 150 目~ 300 目筛子选取合适粒径的粉末后留粉使用。母材 3Cr14 不锈钢和 0.3C-18Cr 合金粉末成分如表 1 所示。

母材表面用 400 目砂纸打磨后用无水乙醇和丙酮 清洗以除去表面氧化物和油污等杂质,将 0.3C-18Cr

收稿日期: 2018-11-05

基金项目:国家自然科学基金(51461029);广东省"扬帆计划"引进创新创业团队专项(2015YT02G090);广东省2017年科技发展专项(协同创新与环境平台建设)(611229498090);阳江市五金刀剪与镍合金产业增材制造技术创新平台建设项目(2015B020221002) 作者简介:郭铁明,女,1969年生,硕士,教授,兰州理工大学,甘肃 兰州 730050, E-mail: 359611880@qq.com

复合粉末提前置于 DZF-1 真空干燥箱, 在温度 120 ℃ 下干燥 2 h。激光熔覆试验采用德国通快公司的 TruDisk2002 激光器, 激光器额定功率 2000 W, 光斑 直径 3 mm, 保护气体和送粉气体均采用纯度大于 99.99%的氩气, 控制涂层厚度约 3 mm。利用正交试 验选取最优工艺参数, 具体工艺参数如表 2 所示。

将激光熔覆后的样品沿垂直于激光扫描方向截取 尺寸为 10 mm×10 mm 的试样块,用 600~2000 目砂纸 打磨抛光后用王水(盐酸:硝酸=3:1)腐蚀待观察面。采用 FEG-450 型热场发射扫描电镜观察涂层组织形貌,用英 国 OXFORD 公司的 Aztec X-Max 80 能谱 (EDS) 仪、 用 RigakuD/max-2004 型 X 射线衍射 (XRD) 仪分析熔 覆层物相组成,XRD 扫描速率为 2°/min,扫描范围为 20°~100°。用 DHV-1000 型维氏数显显微硬度计对熔覆 层微区硬度做检测,测试载荷 9.8 N,加载时间 10 s, 沿涂层边界到基体方向每隔 0.2 mm 测试 1 点,每处测 试硬度取同一水平不同位置 3 次测量的平均值。

2 结果与分析

2.1 Y₂O₃对熔覆层组织形态的影响

图 1 是不同 Y_2O_3 含量的试样熔覆层 XRD 分析。 由图 1a 可知, 熔覆层除了基体相 α 相外, 同时存(Cr, Fe)₂₃C₆、(Cr, Fe)₇C₃、SiC 相。图 1b 是 36°~52°熔覆层 局部 XRD 放大图。可以发现添加不同含量 Y_2O_3 后, 基体相 α 相 { 110 } 面的峰向左发生偏移,说明 α 相的 点阵常数有所增大, C 在 α 相中的固溶度增大。未添 加 Y_2O_3 时熔覆层碳化物主要以(Cr, Fe)₂₃C₆ 为主,添加 1%Y₂O₃ 熔覆层碳化物主要以(Fe, Ni)₃C 为主,而随着 Y₂O₃ 含量的增加,熔覆层碳化物由(Fe, Ni)₃C 型转变 为(Cr, Fe)₇C₃。图 1c 是 28°~40°熔覆层局部 XRD 放大 图。可以发现当 Y_2O_3 添加量为 2%时,熔覆层出现 Y_2O_3 相的峰。

图 2 分别是加入 0%、1%、2%、3%、5%(质量 分数)的 Y₂O₃ 粉末试样熔覆层中部金相组织(OM)照 片。图 2a 是未加 Y₂O₃ 时熔覆层组织,在熔覆层中部 有明显的一次长枝晶(长径比 20:1)和二次枝晶(长径比 6:1),还混有大量的胞状晶和柱状晶,晶粒大小 30~60 µm。图 2b 是加入 1%的 Y₂O₃ 后熔覆层组织。可以看出 一次长枝晶缩短(长径比 5:1),二次枝晶尺寸增大(长径 比 3:1),柱状晶晶粒尺寸 50~90 µm。图 2c 是添加 2% 的

表 1	熔覆粉末和基体化学成分
-AC 1	

Table 1Cladding powder and matrix chemical composition (ω /%)									
Cladding powder and matix	С	Si	Mn	Cr	Мо	Ni	Р	S	Fe
3Cr14	0.26~0.35	≤1.001	≤1.00	12.00~14.00	-	10.3	≤0.035	≤0.030	Bal.
0.3C-18Cr alloy powder	0.21	1.12	0.15	18.66	0.12	2.16	-	-	Bal.

 表 2 激光熔覆工艺参数

 Table 2
 Laser cladding process parameters

 Laser power/W
 Scanning speed/mm·s⁻¹
 Powder feed rate/g·min⁻¹
 Protective gas flow/L·min⁻¹

 1600
 6
 21
 2

图 1 不同 Y₂O₃ 含量的试样熔覆层 XRD 图谱

Fig.1 XRD patterns of sample clad layers with different Y₂O₃ contents: (a) main diffraction peaks; (b) locally enlarged images from 36°~52°; (c) locally enlarged images from 28°~40°

图 2 不同含量 Y₂O₃添加时熔覆层 OM 照片 Fig.2 OM images of cladding layer with different contents of Y₂O₃: (a) 0%, (b) 1%, (c) 2%, (d) 3%, and (e) 5%

Y₂O₃后试样熔覆层组织,其中一次枝晶明显减少,二 次枝晶长大其长径比趋于等轴,枝晶边缘钝化,方向 性减弱,晶粒大小 95~120 µm。图 2d、2e 分别是加入 3%、5%的 Y₂O₃ 后熔覆层组织,在熔覆层中部又出 现一次长枝晶,与未加 Y₂O₃时相比一次枝晶粗化,长 径比减小,二次枝晶量相对 2% Y₂O₃ 试样有所减少, 柱状晶晶粒尺寸明显增大,达到 120~130 µm。综上所 述,在 0.3C-18Cr 合金粉末中加入 Y₂O₃ 后,当含量不 超过 2%时,熔覆层组织中一次长枝晶数量减少且尺 寸减小,二次枝晶尺寸有所增大;当Y2O3的添加量超 过 2%时,一次枝晶数量明显增加,枝晶长径比相对 不含 Y₂O₃ 试样变小且明显粗化,二次枝晶尺寸略有粗 化; 2%Y₂O₃ 试样一次长枝晶数量最少。稀土氧化物 Y₂O₃的加入可作为初生奥氏体的非自发形核,初生奥 氏体含量增加, Y₂O₃ 在激光熔覆过程中由于高能激光 束的照射分解产生 Y³⁺, Y³⁺在奥氏体中溶解度极低, 富集于奥氏体枝晶前沿,减少初生奥氏体相的形核过 冷度,使奥氏体枝晶向多晶发展,方向性长大弱化, 枝晶间距减小,枝晶被分割,树枝晶缩短柱状晶增大, 枝晶边缘钝化[15-18]。

图 3 是添加不同含量 Y₂O₃ 时熔覆层中部组织 SEM 照片。发现未添加 Y₂O₃时,熔覆层组织主要由 块状或条状的铁素体+沿晶界分布的上贝氏体和少量 珠光体类片层组织+少量晶内马氏体组成(图 3b 所 示),在晶内存在直径 0.5~1 µm 的黑色孔洞,沿晶 界分布的贝氏体连接成网状且数量较多,用 Image J 软件统计发现贝氏体数量占熔覆层体积 33.55%,如 表 3 所示。与未添加 Y₂O₃试样相比,加入 Y₂O₃的试 样熔覆层明显致密,黑色孔洞数量显著减少,熔覆层 组织发生了明显变化,熔覆层晶内板条马氏体增多, 铁素体逐渐减少并消失,晶界贝氏体数量有显著减 少。这和 XRD 结果非常吻合,添加不同含量 Y₂O₃ 后,碳在α相中的固溶度增大,马氏体和铁素体都为 α相,但马氏体的含碳过饱和,故点阵常数变大。随 着 Y₂O₃含量的增加,板条马氏体尺寸变大;晶界出 现少量短棒状碳化物;当Y₂O₃含量超过 3%时,板条 马氏体粗化明显。

图 4 是分别对应图 3 中 0%、1%、5% Y₂O₃ 试样 熔覆层中部 A、B、C 区域能谱图。通过能谱图可知, 晶界上贝氏体中的短棒状碳化物主要以 Cr、Fe、C 元 素为主,为含 Cr 的合金碳化物。通过原子比计算可知, 随着 Y₂O₃ 含量的增加,晶界碳浓度增加,(Cr,Fe)/C 的值降低,如表 4 所示,0%、1%、5% Y₂O₃ 试样(Cr, Fe)/C 的值与 *M*₂₃C₆、*M*₃C、*M*₇C₃ 的(Cr,Fe)/C 的值相 近。因此,随着 Y₂O₃ 含量的增加,0%、1%、5% Y₂O₃ 试样中晶界碳化物依次为 *M*₂₃C₆、*M*₃C、*M*₇C₃型。图 5 是 Y₂O₃ 含量分别为 1%、5%时熔覆层中部组织 Y、 O 元素的 EDS 面扫描图。从图 5a、5b 发现,Y、O 元 素在熔覆层组织中分布均匀,未出现局部大量 Y、O 元素富集。

图 3 不同含量 Y₂O₃添加时熔覆层 SEM 照片 Fig.3 SEM images of cladding layer with different contents of Y₂O₃: (a, b) 0%, (c) 1%, (d) 2%, (e) 3%, and (f) 5%

表 3 不同含量 Y₂O₃试样熔覆层中晶界组织体积分数

Table 3	Bainite volume fraction in cladding layers wi	th
	different contents of Y ₂ O ₃ samples	

Y_2O_3 content, $\omega/\%$	0	1	2	3	5
Volume fraction/%	33.55	11.53	7.94	4.96	4.40

激光熔覆过程温度很高,是个快速凝固的过程。初 生奥氏体通过包晶反应发生转变,当温度冷却到铁素体 相变温度时,铁素体开始从奥氏体中析出,铁素体的生 长一般由奥氏体中的碳扩散控制。由于铁素体生长过程 中合金原子的分配^[19],过量的碳和溶质原子会集中到 残余奥氏体中,转变温度降到 B_s时,含碳高的残余奥 氏体转变为上贝氏体^[20,21]。上贝氏体晶核是单相,其首 先在原奥氏体晶界处形核,上贝氏体片条相互平行地在 晶界处呈羽毛状沿奥氏体某一晶面生长,形成贝氏体片 条群。熔覆过程中 Y₂O₃ 在高能激光束下会分解形成 Y^{3+} , Y 原子半径比 Fe 大, 导致 Y^{3+} 周围基体畸变增大, 熔覆层组织中空位等缺陷增加,Y³⁺在缺陷处塞积,阻 塞了扩散通道,而稀土元素与 C 元素之间的相互作用 系数为负值^[22],进一步证明稀土元素的添加阻碍了渗 碳体形核,并且随着 Y₂O₃ 的添加,游离的 Y³⁺增加, 铁素体形成受到抑制^[23]。从图 4 中还发现,加入 Y₂O₃ 后碳化物中 Fe 元素含量小于未加 Y₂O₃时 Fe 元素的含 量,这是因为稀土元素的加入降低了熔覆材料中 Cr、 Si、Ni、Fe 元素的活性并增加了合金元素的互溶性, 从而实现熔覆层微合金化^[18,24,25],抑制了贝氏体转变过 程中溶质原子的扩散;并有利于合金元素在奥氏体中的 溶解,增加奥氏体稳定性,使铁素体转变处于劣势,马 氏体相变发生;而Y³⁺更加倾向于奥氏体晶界处富集, 降低了奥氏体晶界能,提高了过冷奥氏体稳定性,使C 曲线右移,碳元素扩散速率降低,碳浓度增加,导致碳 化物类型发生变化[24-26]。

图 4 图 3 熔覆层中微区能谱图

Fig.4 Micro-zone EDS spectra in the middle of cladding layer in Fig.3: (a) A zone, (b) B zone, and (c) C zone

图 5 添加 1%、5% Y₂O₃ 时熔覆层中部 Y、O 元素 EDS 面分布

Fig.5 EDS mapping of Y and O elements in the middle of the cladding layer when adding 1% Y₂O₃ (a) and 5% Y₂O₃ (b)

Tabla /	Local area (Cr Fa)/C value of cladding layer with
表 4	不同含量 Y2O3 试样熔覆层局部区域(Cr, Fe)/C 值

different contents of Y₂O₃

Y_2O_3 content, $\omega/\%$	0	1	5
(Cr, Fe)/C	3.8	3.2	2.6

激光熔覆过程是一个快速加热和冷却的过程,在 快速凝固过程中熔覆层枝晶间隙若没有足够的金属液 体补充,很容易导致在熔覆层基体产生较多孔洞;加 入 Y₂O₃后,熔覆过程产生的 Y³⁺化学活性高,与熔池 中的 O、Si 等元素形成稳定的低熔点化合物,增加了 液态金属的流动性,在激光熔覆过程中这些化合物从 熔池中上浮,沿途带走熔覆层中的气体并最终形成熔 渣,起到净化组织的作用;Y³⁺的富集取代了原来在晶 界处不均匀分布的低熔点夹杂物,有助于夹杂物的细 化和分散分布,并对位错产生钉扎作用。随着Y₂O₃ 含量的增加,熔覆层基体和晶界被净化,组织更加致 密均匀化^[27-29]。

2.2 Y₂O₃ 对熔合线区域组织形态的影响

图 6 为不同 Y₂O₃ 含量试样熔合线区域金相组

图 6 不同含量 Y_2O_3 添加时热影响区组织形貌 Fig.6 Microstructures of heat affected zone with different contents of Y_2O_3 : (a, b) 0%, (c, d) 1%, (e, f) 2%, (g, h) 3%, and (i, j) 5%

织 OM 照片。其中图 6a、6c、6e、6g、6i 为熔合线组 织,发现界面结合处无裂纹、无气孔,呈良好的冶金 结合。未添加 Y₂O₃(图 6a)时,界面结合处的平面晶尺 寸 80~100 μm;而当加入 Y₂O₃ 的含量为 1%、2% 时(图 6c、6e),平面晶明显细化,平面晶尺寸 50~70 μm。 通过熔合线上组织(图 6b、6d、6f)发现,在靠近熔覆 层底部区域,未添加 Y₂O₃ 的组织中可明显观察到垂直 于熔合线的树枝晶和柱状晶,并且二次枝晶基本垂直 于一次枝晶;而添加 Y₂O₃ 的组织中几乎没有枝晶,柱 状晶长度明显减小、细化,没有显著的方向性生长, 晶粒边界弯曲,较难区分一次枝晶和二次枝晶。因为 Y₂O₃ 中 Y 的原子半径很大,在熔覆层凝固过程中 Y³⁺ 富集于枝晶间以及固液界面前沿,且Y³⁺易于吸附Cr、 Ni 等合金元素,因此在界面结合区域Cr、Ni 元素含 量增加,阻碍了柱状晶沿垂直结合区界面的择优生长, 使柱状晶细化^[17,28]。

当 Y₂O₃ 含量为 3%、5% 时,熔合线区域组织(图 6g、6h、6i、6j)与未添加 Y₂O₃ 时相比,界面结合处平 面晶晶粒尺寸增大,熔合线上组织出现一次树枝晶, 且树枝晶和柱状晶厚度明显增加。因为 Y₂O₃ 含量增 加,成分过冷度进一步降低,利于平面晶的生长;Y³⁺ 富集于奥氏体结晶前沿,阻碍碳元素的扩散,使奥氏 体枝晶向多晶发展,造成枝晶生长被打断,一次枝晶 臂缩短,枝晶变粗,在激光熔覆时奥氏体枝晶在生长 过程中容易搭接形成胳架从而阻碍碳化物的连续生 长,碳化物形态由粗大的片状、长条状,向断续的网 状、短棒(或颗粒状)状过渡^[30]。

2.3 Y₂O₃对熔覆层力学性能的影响

图 7 为添加不同 Y₂O₃ 时熔覆层显微硬度分布曲 线,可以发现:从熔覆层顶部至基体,显微硬度呈梯 度分布。熔覆材料未添加 Y₂O₃时,熔覆层硬度较低, 平均硬度(HV02)约5800 MPa; 当加入Y2O3后, 熔覆 层硬度有了显著提高,加入1%、2%、3%、5%的Y₂O₃ 后熔覆层平均硬度(HV02)分别为 6900、7100、6980、 6840 MPa, 其中含 2% Y₂O₃熔覆层具有最高硬度,达 到 7400 MPa, 比未添加 Y₂O₃时的平均显微硬度增加 1600 MPa。熔覆层显微硬度在添加 Y₂O₃ 后显著提高 的主要原因是 Y_2O_3 促进了马氏体的形成,未添加 Y_2O_3 试样熔覆层由晶内铁素体和沿晶界分布的上贝氏体组 成,加入Y₂O3后熔覆层组织由板条马氏体+晶界少量 上贝氏体构成, Y₂O₃的加入抑制了先共析铁素体的形 成,促进了马氏体相变,从而使得熔覆层硬度大幅度 提高。其次 Y₂O₃ 的加入使熔覆层组织致密均匀, 在减 少晶界和相界面的夹杂的同时提高了晶界和相界面的

图 7 熔覆层显微硬度分布

Fig.7 Microhardness distribution of cladding layer

强度,同时分布在熔覆层基体上的细小颗粒状 Y₂O₃ 也起到了弥散强化作用^[17,30]。此外 Y₂O₃ 的加入使一次 枝晶臂缩短、枝晶变粗、枝晶边缘钝化,提高了熔覆 层韧性,降低裂纹敏感性。但当 Y₂O₃ 的添加量为 3%、 5%时,熔覆层硬度略有降低,其主要原因是奥氏体晶 粒粗大导致板条马氏体粗化所致。

3 结 论

 在 0.3C-18Cr 合金中加入 Y₂O₃ 后熔覆层枝晶 组织得到显著改善,枝晶长度减小且数量减少,枝晶 尖端钝化且径向粗化,长径比减小,同时熔覆层气孔 减少,熔覆层得到净化。

2)加入 Y₂O₃促进了 0.3C-18Cr 合金熔覆层中马 氏体的形成,未添加 Y₂O₃试样熔覆层由晶内铁素体、 晶界分布的上贝氏体及少量马氏体组成,加入 Y₂O₃ 后熔覆层组织由板条马氏体+晶界少量贝氏体构成; 且随 Y₂O₃含量增加,板条马氏体略有粗化,贝氏体数 量明显减少,贝氏体碳化物的碳浓度增大,片层状碳 化物类型由低碳型碳化物向高碳型碳化物转变,未加 Y₂O₃试样、1% Y₂O₃试样、5% Y₂O₃试样中片层状碳 化物分别为 M₂₃C₆、M₃C、M₇C₃。

3)加入Y₂O₃后,熔覆层硬度显著提高,添加2% Y₂O₃时 0.3C-18Cr 合金熔覆层的硬化效果最佳,其最 高显微硬度比未添加Y₂O₃时熔覆层平均显微硬度 (HV_{0.2})增加1600 MPa;当Y₂O₃的添加量超过3%后, 由于马氏体板条粗化明显使得强化效果降低。

参考文献 References

- [1] Ding L, Hu S. Surface & Coatings Technology[J], 2015, 276: 565
- [2] Ding L, Jiang H, Li M. Special Casting & Nonferrous Alloys[J], 2013, 33: 805
- [3] Cui Penghe(崔朋贺), Du Zhuangzhuang(杜壮壮), Zhang Hao(张 浩) et al. Applied Laser(应用激光)[J], 2016(3): 239
- [4] Zhu Yizhi(朱益志), Liu Qibin(刘其斌), Jiang Haibing(蒋海兵) et al. Chinese Journal of Rare Metals(稀有金属)[J], 2016, 40(5): 509
- [5] Li H C, Wang D G, Chen C Z et al. Colloids & Surfaces B Biointerfaces[J], 2015, 127: 15
- [6] Qiao F, Wang C, Han L et al. Chinese Journal of Lasers[J], 2015, 42(8): 1
- [7] Shang Guan, Qian Qian, Cheng Xianhua. Journal of Rare Earths[J], 2004, 22(3): 406
- [8] Yang Jichun(杨吉春), Liu Xiao(刘晓), Gao Xuezhong(高学中) et al. Special Stell(特殊钢)[J], 2007(3): 30
- [9] Wang Xiaoqiang(Ξ 小强), Li Quanan(李全安), Zhang

Xingyuan(张兴渊). Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2007, 28(S1): 62

- [10] Zhong Wenhua(钟文华), Liu Guizhong(刘贵仲), Pan Jiezong(潘洁宗) et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2013, 34(2): 147
- [11] Wang Longmei, Lin Qin, Ji Jingwen et al. Journal of Rare Earths[J], 2004, 22: 257
- [12] Radu I, Li D Y, Llewellyn R. Wear[J], 2004, 257(11): 1154
- [13] Riffard F, Buscail H, Caudron E et al. Applied Surface Science[J], 2006, 252(10): 3697
- [14] Wang Chenglei(王成磊), Gao Yuan(高 原). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2017, 46(3): 812
- [15] Ding Y, Sun X. Manufacturing Technology & Machine Tool[J], 2011, 45(10): 17
- [16] Liao Zhongliang(廖钟亮), Wei Senquan(魏森泉), Zhou Zhe(周哲) et al. Heat Treatment Technology and Equipment (热处理技术与装备)[J], 2001, 22(1): 39
- [17] Luo Junming(罗军明), Zhang Jianping(张剑平), Wen Zhenhong(温桢洪). Applied Laser(应用激光)[J], 2009, 29(5): 402
- [18] Yin G, Chen S, Liu Y et al. Journal of Materials Engineering & Performance[J], 2018, 27(3): 1154
- [19] Cerjak H, Bhadeshia H K D H, Kozeschnik E et al. Weld in the World[J], 2004, 48(11-12): 36

- [20] Caballero F G, Miller M K, Babu S S et al. Acta Materialia[J], 2007, 55(1): 381
- [21] Militzer M, Pandi R, Hawbolt E B. Metallurgical & Materials Transactions A[J], 1996, 27(6): 1547
- [22] Wu Y, Wang L, Du T. Journal of The Less-Common Metals[J], 1985, 110(1): 187
- [23] Liu C J, Liu H L, Jiang M F. Advanced Materials Research[J], 2011, 163-167: 61
- [24] Zhang K M, Zou J X, Jun L I et al. Transaction of the Nonferrous Metals Society of China[J], 2012, 22(8): 1817
- [25] Wang Gui(王 贵), Zhou Xinchu (周新初), Li Diankai(李殿 凱) et al. Ordnance Material Science and Engineering(兵器 材料科学与工程)[J], 2001, 24(1): 19
- [26] Han Yongling(韩永令), Du Qisheng(杜奇圣). Chinese Rare Earths(稀 土)[J], 1984(2): 17
- [27] Wang K L, Zhang Q B, Sun M L et al. Applied Surface Science[J], 2001, 174(3-4): 191
- [28] Xu P, Tang X, Yao S et al. Journal of Materials Processing Technology[J], 2008, 208(1-3): 549
- [29] Zhang Deku(张德库), Xue Haobo(薛浩博), Wang Kehong(王克鸿) et al. Rare Metal Materials and Engineering (稀 有金属材料与工程)[J], 2018, 47(2): 469
- [30] Wang Chenglei(王成磊), Gao Yuan(高 原), Zhang Guangyao (张光耀) et al. Chinese Journal of Rare Metals(稀有金属)[J], 2016, 40(3): 201

Influence of Y₂O₃ Content on Microstructure and Properties of Laser Cladding 0.3C-18Cr Alloy Coating

Guo Tieming¹, Pu Yabo¹, Zhang Ruihua², Li Zilin², Li Qiang¹ (1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China) (2. Hardware Knife Cut Industrial Technology Research Institute Yangjiang, Yangjiang 529533, China)

Abstract: 0.3C18Cr composite coatings were prepared with different Y_2O_3 contents on 3Cr14 stainless steel substrate by laser cladding. The effects of different Y_2O_3 contents on the microstructure, phase composition and hardness of the cladding layer were studied by metallographic microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and microhardness tester. The results show that there are many pores in the cladding layer without Y_2O_3 addition, and the microstructure of the cladding layer consists of intragranular ferrite, bainite distributed on grain boundary and a small amount of martensite; After Y_2O_3 addition, the dendrite length of the cladding layer decreases and the number decreases, the dendrite tip is passivated and radially roughened, the length to diameter ratio decreases, meanwhile the pores of the cladding layer decrease, and the cladding layer is purified. The microstructure of the cladding layer is composed of lath martensite and a small amount of bainite in the grain boundary. With the increase of Y_2O_3 , the lath martensite is slightly coarsened, the number of bainite decreases obviously, the carbon concentration of bainite carbide increases, and the type of lamellar carbides transforms from low carbon carbide to high carbon carbide. After Y_2O_3 addition, the microhardness of the clad layer is significantly improved; When 2wt% Y_2O_3 is added, the hardening effect of the cladding layer comes up to the best; the hardness is 1600 MPa higher than that of the cladding layer without Y_2O_3 .

Key words: laser cladding; Y2O3 content; microstructure; properties

Corresponding author: Guo Tieming, Master, Professor, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China, E-mail: 359610880@qq.com