Be/CuCrZr 高温热等静压扩散连接 接头组织演化及断裂机理

李 峰1,李志年1,钟景明1,王战宏1,何力军2,许德美1

(1. 西北稀有金属材料研究院宁夏有限公司 稀有金属特种材料国家重点实验室,宁夏 石嘴山 753000)(2. 宁夏大学 宁夏光伏材料重点实验室,宁夏 银川 750021)

摘 要:利用电子探针微区分析术(EPMA)研究了以 50 µm Ti 箔为中间层的 Be/CuCrZr 高温(780~850 ℃),不同时 间(0.5~2 h)热等静压扩散连接接头组织演化过程及断裂机理。结果表明:Be/Ti 和 Ti/CuCrZr 界面反应扩散的产物和 先后顺序符合能量-通量法则;Be 在 Ti 中的扩散速率大于 Cu 在 Ti 中的扩散速率,但Be/Ti 界面反应区形成高 Be 含量 的 Ti-Cu-Be 三组元相脆性高,是接头性能恶化的主要原因,而 Ti/CuCrZr 界面反应区形成的低 Be 含量的 Ti-Cu-Be 三 元相对接头性能影响相对较小;HIP 连接工艺参数对样品接头性能存在明显影响,800 ℃/2 h/130 MPa 连接接头性能最 佳,抗拉强度为 122.8 MPa,界面结合良好,无连接热裂纹,断裂机理为 Be₁₂Ti+Be₁₀Ti 混合金属化合物层解理断裂。 关键词:Be;CuCrZr;热等静压扩散连接;界面组织演化;断裂机理 中图法分类号:TG146.24;TG111.6 文献标识码:A 文章编号:1002-185X(2019)10-3331-09

铍具有所有金属中最低的热中子吸收截面,且密 度低,热性能好^[1,2],是国际热核聚变反应堆 (international thermonuclear experimental reactor, ITER)首选的直接面对等离子体的材料。ITER 屏蔽 包层模块第一壁板(first wall, FW)设计由铍、CuCrZr 合金和 316L(N)不锈钢复合而成^[3,4]。CuCrZr 合金和 316L(N)不锈钢先采用爆炸连接的方法连接起来,连接 后的构件再通过热等静压(hot isostatic pressing, HIP) 与铍连接在一起^[5]。但铍是密排六方晶体,连接时易 导致应力分布不均匀,且表面活性高易与氧、氮反应, 在扩散连接时增加原子扩散难度^[6,7],因此,铍与 CuCrZr 合金的 HIP 扩散连接是 ITER 屏蔽包层第一壁 制造最具挑战性的关键技术。ITER 各参与方均十分重 视该项技术的研究工作,一直将 Be/CuCrZr 的 HIP 连 接作为一项重要课题进行研究^[8]。

Be 与 Cu 易生成脆性金属间化合物 BeCu (γ相) 或 Be₂Cu (δ相)^[9],各国学者^[3,4,8-18]多采用加中间层 过渡材料的连接方式。主要的过镀层材料有 Ag, Al, Ti, Cr 以及复合层 Ti/Cu, Cr/Cu, Al/Ti/Cu 等^[15]。Ag 是一种理想的过渡层材料,但在中子辐照下 Ag 易于 蜕变成 Cd^[15]; Al 则易在铍晶界富集导致 Be 材脆断, 且 Al 熔点低,限制了连接温度^[7,15]; Cr 的局限性在于 Cr 金属间化合物较脆^[15];而 Ti 的优势是 Be 在 Ti 中 扩散系数小,更能有效阻止 Be 扩散^[15]。叶林森等^[11] 采用 Be 单侧镀 Ti/Cu 复合镀层的工艺,获得 Be/CuCrZr 界面抗剪切强度最高达 243 MPa,最低 223 MPa。 Sherlock 等^[16]采用直接加 Ti/Cu 中间层,在 Be 侧离子 镀 Ti,在 CuCrZr 侧电镀 Cu 层的工艺,Be/CuCrZr 界 面抗剪切强度分别为 165,165 和 161 MPa,也获得了 较为理想的 Be/CuCrZr 连接接头。本实验以 50 µm 钛 箔作中间层,研究 Be/CuCrZr 合金高温 HIP 扩散连接 接头组织演化过程及其断裂行为,分析影响 Be/CuCrZr 合金高温 HIP 连接接头性能的关键工艺和组织因素。

1 实 验

实验材料选用 Be、Ti 和 CuCrZr 合金。Be 的杂质 含量(质量分数,下同)≤1.0%。CuCrZr 合金含 0.69% 的 Cr, 0.10%的 Zr, 其余 Cu。钛箔杂质含量≤0.01%。 Be 和 CuCrZr 样品尺寸均为 Φ30 mm×30 mm, 钛箔厚 50 μm。

在 QIH16 热等静压机上进行 HIP 连接,工艺见表 1。HIP 后,从接头最外同心圆截取金相和拉伸样品。 拉伸样品直径 *d*₀=6 mm,标距 *l*₀=25 mm。拉伸试验在 Instron4505 万能材料试验机上进行,拉伸速率为 3.3×

收稿日期: 2018-10-18

基金项目: 国家自然科学基金 (51874246); 宁夏自然科学基金 (2018AAC03225)

作者简介: 李 峰, 男, 1975 年生, 高级工程师, 西北稀有金属材料研究院宁夏有限公司, 稀有金属特种材料国家重点实验室, 宁夏 石嘴山 753000, 电话: 0952-2098372, E-mail: lifengkjch@163.com

表 1 HIP 扩散连接工艺参数和连接接头平均抗拉强度 Table 1 Parameters of HIP diffusion-joining and average ultimate tensile strength of the Be/CuCrZr joints

utilitate tensite strength of the De/CuCiZi joints								
Sample No.	Temperature/°C	Time/h	Pressure/MPa	$\sigma_{\rm b}/{ m MPa}$				
1#	780	2		32.0				
2#	800	2		122.8				
3#	830	0.5	120	49.6				
4#	830	1	150	64.3				
5#	830	2		46.3				
6#	850	2		36.2				

 10^{-6} m/s。拉伸试验后,从离断口 10 mm 处(Be 端) 截取断口样品。金相样品尺寸 10 mm×10 mm×10 mm, 样品抛光后侵蚀显示接头显微组织,先侵蚀 Cu 再侵 蚀 Ti。铜侵蚀剂: 2 g Fe(NO₃)₃ + 20 mL H₂O,时间 20 s, 钛侵蚀剂: 10 mL HF + 30 mL HNO₃ + 50 mL H₂O, 时间 10 s。金相样品接头处组织形貌、成分定量分析和 面扫描,以及断口样品组织形貌和成分定性分析均在 CAMEBAX-MICRO 型电子探针微区分析仪(electron probe microanalysis, EPMA)上进行。

2 结果与讨论

2.1 连接接头抗拉强度

HIP 扩散连接 Be/CuCrZr 样品抗拉强度见表 1。从 表 1 可知,连接时间相同(2 h)时,样品抗拉强度在 连接温度 780 ℃时为 32.0 MPa,800 ℃为 122.8 MPa, 830 ℃为 46.3 MPa,850 ℃为 36.2 MPa,随着连接温度 的升高,连接接头抗拉强度表现为先升高而后下降。连 接温度相同(830 ℃)时,样品的抗拉强度在 1 h 时最 好,为 64.3 MPa,0.5 和 2 h 样品的抗拉强度分别为 49.6 和 46.3 MPa,均低于 1 h 的,随着连接时间的增加,连 接接头抗拉强度也表现为先升高后下降。

2.2 Be/CuCrZr 连接接头处组织形成机理及其演化 过程

图 1 是不同温度和时间 HIP 扩散连接 Be/CuCrZr 样品接头处显微组织。组织相应的 Be, Ti, Cu 和 Cr 4 种元素的定量分析结果及沿扩散方向的厚度见表 2。

异种金属扩散连接时,反应扩散过程中能生成哪些 化合物及其形成的先后次序是个比较复杂的问题。按热 力学考虑,最易生成的相是形成热最大的相,但也有观 点认为生成相受界面元素浓度影响,即受扩散的控制, 取决于界面动力学条件^[19]。何鹏等^[20]提出多元系统扩 散连接时,生成相组元和比例按原子扩散通量比优先形 成热力学驱动力最大的相,即通量-能量法则。并指出, 通量-能量相当的两种或多种金属间化合物可以同时形 核和长大,在界面处形成混合金属间化合物层。 2.2.1 Be/Ti 界面反应区 由 Be-Ti 二元合金相图可知^[21],此系统 Be 与 Ti 之间反应物有 Be₁₂Ti, Be₁₀Ti, Be₁₇Ti₂, Be₁₃Ti₂, Be₃Ti, Be₂Ti 和 Be₅Ti₄。遗憾的是无可查数据比较 Be-Ti 系统 化合物形成热,但 Kubaschewski^[22]认为,可用熔点来 判断化合物形成热,熔点越高,形成热就越大。Be-Ti 化合物中 Be₁₇Ti₂熔点最高,按热力学考虑,Be₁₇Ti₂ 是最易形成的相,然后依次为 Be₁₀Ti, Be₁₃Ti₂, Be₁₂Ti。 根据原子通量比公式^[20],Be/Ti 界面 Be 与 Ti 原子扩 散通量比 $J^{\text{Be}}/J^{\text{Ti}} \ge 12$,按能量-通量法则 Be₁₂Ti 动力学 形核几率最大,其次为 Be₁₀Ti, Be₁₃Ti₂。

在 Be/Ti 界面反应区, 1# (780 ℃/2 h), 2# (800 ℃/ 2h)和 3# (830 ℃/0.5 h)样品形成一层扩散层,分别见图 1a标识2,图1b标识2和图1c标识2,成分均为Be12Ti+ Be10Ti, 见表 2。先形成的扩散层为 Be12Ti+Be10Ti, 非 Be17Ti2层,表明 Be/Ti 界面反应受扩散控制,主要取 决于界面动力学条件。按能量-通量法则, Be12Ti+ Be10Ti 层生成之后,随着其厚度的增加, Be 扩散穿过 Be12Ti+Be10Ti 层到达(Be12Ti+Be10Ti)/Ti 界面的量逐渐 减少, (Be₁₂Ti+Be₁₀Ti)/Ti 界面原子扩散通量比 J^{Be}/J^{Ti} 不断降低。当 $Be_{12}Ti+Be_{10}Ti$ 层达到特定厚度, J^{Be}/J^{Ti} 将接近 8.5,此时达到 Be17Ti2的形核生长条件,由此 Be₁₇Ti₂开始在(Be₁₂Ti+Be₁₀Ti)/Ti 界面形核生长。 4# (830 ℃/1 h)和 5# (830 ℃/2 h)样品(Be₁₂Ti+Be₁₀Ti)/ Ti 界面生成的新化合物层,见图 1d 标识 3 和图 1e 标 识 3, 化学成分正是 Be17Ti2, 见表 2。由此可见, Be/Ti 界面反应的产物和先后次序符合通量-能量法则。另 外, Be10Ti 兼有动力学和热力学两种优势, 最初形成 的扩散层中含有 Be10Ti, 也符合通量-能量相当的两种 或多种金属间化合物可以同时形核和长大的原则。

6# (850 ℃/2 h)样品 Be/Ti 界面反应区也是两层扩 散层,见图 1f 标识 2 和标识 3。从 Be→Ti,第 1 扩散 层化学成分仍为 Be₁₂Ti+Be₁₀Ti,第 2 层元素原子比化 学式为 Ti₃CuBe₅,但它位于原 Be₁₇Ti₂扩散层的位置, 而原有 Be₁₇Ti₂ 层消失,这表明 Ti₃CuBe₅的形成是因 Cu 扩散进入至 Be₁₇Ti₂所致,非新生成的扩散层。 2.2.2 Ti/CuCrZr 界面反应区

根据 Ti-Cu 二元合金相图^[23],此系统 Ti 与 Cu 之间 的反应物有 Ti₂Cu, TiCu, Ti₃Cu₄, Ti₂Cu₃, TiCu₂和 β TiCu₄, 其中 TiCu₂是热力学不稳定相,870 ℃左右分解为 Ti₂Cu₃ 和 β TiCu₄。 β TiCu₄在 400~500 ℃之间转变为 α TiCu₄,但 成分几乎不变。按熔点判断,Ti/CuCrZr 界面生成几率 最大的相为 Ti₂Cu,然后依次为 TiCu,Ti₃Cu₄,TiCu₂, Ti₂Cu₃和 TiCu₄。按通量-能量法则,Ti/CuCrZr 界面, Cu 与 Ti 原子扩散通量比 $J^{Cu}/J^{Ti} \ge 4$,TiCu₄动力学形核 几率最大,然后依次为 Ti₂Cu₃,Ti₃Cu₄,TiCu 和 Ti₂Cu₅

图 1 不同工艺 HIP 扩散连接以 50 µm Ti 箔为中间层的 Be/CuCrZr 连接接头处真空退火后的显微组织

Fig.1 SEM micrographs of interdiffusion layers zone in the Be/CuCrZr joints with 50 µm Ti interlayer bonded at different HIP parameters after vacuum annealing: (a) 1# (780 °C/2 h), 1-Be base, 2-Be₁₂Ti+Be₁₀Ti, 3-sub-pecipitated microstructure, 4-TiCu, 5-Ti₃Cu₄, 6 and 7-TiCu₄, 8-CuCrZr base; (b) 2# (800 °C/2 h), 1-Be base, 2-Be₁₂Ti+Be₁₀Ti, 3-sub-pecipitated microstructure, 4-fine eutectoid-like microstructure, 5-Ti₂Cu, 6-TiCu, 7-Ti₃Cu₄, 8-Ti₂(Cu,Cr)₃, 9-TiCu₄, 10-CuCrZr base; (c) 3# (830 °C/0.5 h), 1-Be base, 2-Be₁₂Ti+Be₁₀Ti, 3-sub-pecipitated microstructure, 4-fine eutectoid-like microstructure, 5-TiCu, 6-Ti₃Cu₄, 7-TiCu₄, 8-CuCrZr base; (d) 4# (830 °C/1 h), 1-Be base, 2-Be₁₂Ti+Be₁₀Ti, 3-Be₁₇Ti₂, 4-sub-pecipitated microstructure, 5-fine eutectoid-like microstructure, 6-Ti₂Cu, 7-TiCu, 8-Ti₃Cu₄, 9-Ti₂(Cu,Cr)₃, 10-TiCu₄, 11-CuCrZr base; (e) 5# (830 °C/2 h), 1-Be base, 2-Be₁₂Ti+Be₁₀Ti, 3-Be₁₇Ti₂, 4-fine eutectoid-like microstructure, 5-TiCu₄+28%Ti₂Cu₃, 8-TiCu₄+6%Ti₂Cu₃, 8-TiCu₄, 8-CuCrZr base; (f) 6# (850 °C/2 h), 1-Be base, 2-Be₁₂Ti+Be₁₀Ti, 3-Ti₃CuBe, 6-TiCu₅Be, 7-TiCu₄+6%Ti₂Cu₃, 8-TiCu₄+6%Ti₂Cu,Cr)₃, 9-TiCu₄, 10-CuCrZr base

	rameters	(De gam	eu by ti	ie balane	memou	l)	
	Ti/at%	Cu/at%	Cr/at%	Be/at%	Widt	th/μm	Comments
			Sam	ple 1# (78	30 °C/2 h	.)	
Layer 1	0.210	0.005	0.001 99.784			Be	
Layer 2	8.463	0.005	0.001	91.531		4	$Be_{12}Ti+Be_{10}Ti$
Layer 3 Base	94.561	0.115	0.020	5.303			Ti supersaturated solid solution (Be is
(Sub-precipitated					5	53	main solute)
microstructure) Precipitates	75.664	0.183	0.011	24.142		0.40	Be-Ti binary intermetallic compounds
Layer 4	51.007	48.987	0.006	0.000	3~4	8~10	TiCu
Layer 5	43.360	56.631	0.009	0.000	1~3		T1 ₃ Cu ₄
Layer 6	21.767	78.224	0.009	0.000	2~5		
Layer /	21.440	78.552	0.008	0.000			
Layer 8 0.		98.999	0.004	0.000			CrZrCu alloy
			Sam	ple 2# (80	00 ℃/2 h	.)	
Layer 1	0.018	0.008	0.007	99.967			Be
Layer 2	8.610	0.008	0.009	91.372	10.5		Be ₁₂ Ti+Be ₁₀ Ti
Layer 3 Base	87.552	0.302	0.012	12.164			Ti supersaturated solid solution (Be is
(Sub-precipitated	0,1002	012 02	0.012	121101	23~25		main solute)
microstructure) Precipitates	81.029	0.195	0.014	18.762			Be-Ti binary intermetallic compounds
						47	Ti supersaturated solid solution (Be and
Layer 4 (Fine eutectoid-like	83.220	2.721	0.043	14.015	22~24		Cu both are main solute) with Ti-Cu
microstructure)							binary and Be-Ti-Cu ternary intermetallic
							compounds
Layer 5	67.109	32.891	0.098	0.000	~1	12~15	Ti ₂ Cu
Layer 6	50.191	49.783	0.027	0.000	4~7		TiCu
Layer 7	43.334	56.553	0.090	0.023	1~3		$T_{13}Cu_4$
Layer 8	40.187	55.176	4.637	0.000	~1		$T_{12}(Cu,Cr)_3$
Layer 9	22.245	77.435	0.321	0.000	2~5		
Layer 10	2.196	97.231	0.574	0.000			CrZrCu alloy
			Samp	ole 3# (83	0 °C/0.5 ⊡	h)	
Layer 1	0.020	0.008	0.000	99.972			Be
Layer 2	8.150	0.014	0.009	91.827	,	7	Be ₁₂ Ti+Be ₁₀ Ti
							Ti any anastronated solid solution (Dais
Layer 3 Base	91.690	0.201	0.022	8.087			Il supersaturated solid solution (Be is
Layer 3 (Sub-precipitated Base	91.690	0.201	0.022	8.087	36~38		main solute).
Layer 3 Base (Sub-precipitated microstructure) Precipitates	91.690 82.592	0.201 0.034	0.022 0.003	8.087 17.371	36~38	53	main solute). Be-Ti binary intermetallic compounds
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like	91.690 82.592	0.201 0.034	0.022	8.087 17.371	36~38	53	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure)	91.690 82.592 89.136	0.201 0.034 6.060	0.022 0.003 0.042	8.087 17.371 4.762	36~38 12~15	53	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure)	91.690 82.592 89.136	0.201 0.034 6.060	0.022 0.003 0.042	8.087 17.371 4.762	36~38	53	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5	91.690 82.592 89.136 51.189	0.201 0.034 6.060 47.727	0.022 0.003 0.042 0.029	8.08717.3714.7621.0562.000	36~38 12~15 4-7	53 10~13	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6	91.690 82.592 89.136 51.189 43.712	0.201 0.034 6.060 47.727 56.105	0.022 0.003 0.042 0.029 0.182	8.087 17.371 4.762 1.056 0.000	36~38 12~15 4-7 1~3	53 10~13	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7	91.690 82.592 89.136 51.189 43.712 21.124	0.201 0.034 6.060 47.727 56.105 78.793	0.022 0.003 0.042 0.029 0.182 0.083	8.087 17.371 4.762 1.056 0.000 0.000	36~38 12~15 4-7 1~3 2~5	53 10~13	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8	91.690 82.592 89.136 51.189 43.712 21.124 2.066	0.201 0.034 6.060 47.727 56.105 78.793 97.406	0.022 0.003 0.042 0.029 0.182 0.083 0.528	8.087 17.371 4.762 1.056 0.000 0.000 0.000	36~38 12~15 4-7 1~3 2~5	53 10~13	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8	91.690 82.592 89.136 51.189 43.712 21.124 2.066	0.201 0.034 6.060 47.727 56.105 78.793 97.406	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam	8.087 17.371 4.762 1.056 0.000 0.000 0.000 ple 4# (83	36~38 12~15 4-7 1~3 2~5 30 °C/1 h	53 10~13	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy
Layer 3 (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 ple 4# (83 99.968	36~38 12~15 4-7 1~3 2~5 30 °C/1 h	53 10~13)	main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be
Layer 3 Base (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 2	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 ple 4# (83 99.968 91.322	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5	53 10~13)	Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be is Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti
Layer 3 (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 2 Layer 3	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1	53 10~13) 13	Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be is a main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂
Layer 3 (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 3 Zone 4	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013	8.087 17.371 4.762 1.056 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8 435	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1	53 10~13) 13	Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be is a main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti_3Cu_ Ti_2U_ Be Be_12Ti+Be_10Ti Be_17Ti_2 Ti supersaturated solid solution
Layer 3 (Sub-precipitated microstructure) Base Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 7 Layer 8 Layer 1 Layer 3 Zone 4	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8.435	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1	53 10~13) 13	Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be is and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute)
Layer 3 (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013	8.087 17.371 4.762 1.056 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8.435	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1	53 10~13) 13	Be Be Be Be Ti supersaturated solid solution (Be is main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti_3Cu_4 TiCu_4 CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu
Layer 3 (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like microstructure)	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841 89.755	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711 5.604	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8.435 4.617	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1 51	53 10~13) 13	Be Be Be Be Ti supersaturated solid solution (Be is main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti_3Cu_4 TiCu_4 CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and
Layer 3 (Sub-precipitated microstructure) Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 7 Layer 8 Layer 1 Layer 2 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like microstructure)	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841 89.755	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711 5.604	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013 0.024	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8.435 4.617	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1 51	53 10~13) 13	Be Be Be Be Ti supersaturated solid solution (Be is main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu TiSu Be Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds
Layer 3 (Sub-precipitated microstructure) Base Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 7 Layer 8 Layer 1 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like microstructure) Layer 6	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841 89.755 66.372	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711 5.604 33.628	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013 0.024 0.024	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8.435 4.617 0.000	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1 51 ~1.5	53 10~13) 13 14~16	Be Be Be Be Ti supersaturated solid solution (Be is main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds Ti ₂ Cu
Layer 3 (Sub-precipitated microstructure) Base Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like microstructure) Layer 6 Layer 7	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841 89.755 66.372 51.959	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711 5.604 33.628 48.026	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013 0.024 0.057 0.015	8.087 17.371 4.762 1.056 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8.435 4.617 0.000 0.000	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1 51 ~1.5 4~7	53 10~13) 13 14~16	Be Be Be Be Ti supersaturated solid solution (Be is main solute). Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds Ti ₂ Cu TiCu
Layer 3 (Sub-precipitated microstructure) Base Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 2 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like microstructure) Layer 6 Layer 7 Layer 3 Zone 4	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841 89.755 66.372 51.959 43.445	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711 5.604 33.628 48.026 56.418	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013 0.024 0.057 0.015 0.137	8.087 17.371 4.762 1.056 0.000 0.000 0.000 ple 4# (83 99.968 91.322 88.920 8.435 4.617 0.000 0.000 0.000 0.000	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1 51 ~1.5 4~7 1~3	53 10~13) 13 14~16	Be Be Be-Ti-Cu ternary intermetallic compounds Ti supersaturated solid solution (Be is and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds Ti ₂ Cu TiCu Ti ₂ Cu TiCu Ti ₂ Cu
Layer 3 (Sub-precipitated microstructure) Base Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like microstructure) Layer 6 Layer 7 Layer 8 Zone 5 (Fine eutectoid-like microstructure) Layer 7 Layer 9	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841 89.755 66.372 51.959 43.445 39.390	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711 5.604 33.628 48.026 56.418 55.857	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013 0.024 0.057 0.015 0.137 4.753	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 99.968 91.322 88.920 8.435 4.617 0.000 0.000 0.000 0.000	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1 51 ~1.5 4~7 1~3 ~1.5 4~7 1~3 ~1.5	53 10~13) 13 14~16	Be Be Be-Ti-Cu ternary intermetallic compounds Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds Ti ₂ Cu TiCu Ti ₂ Cu TiCu Ti ₃ Cu ₄ Ti ₂ (Cu,Cr) ₃ ^a
Layer 3 (Sub-precipitated microstructure) Base Precipitates Layer 4 (Fine eutectoid-like microstructure) Layer 5 Layer 6 Layer 7 Layer 8 Layer 1 Layer 2 Layer 3 Zone 4 Zone 5 (Fine eutectoid-like microstructure) Layer 6 Layer 7 Layer 8 Layer 9 Layer 10	91.690 82.592 89.136 51.189 43.712 21.124 2.066 0.023 8.666 11.030 90.841 89.755 66.372 51.959 43.445 39.390 21.140	0.201 0.034 6.060 47.727 56.105 78.793 97.406 0.009 0.008 0.043 0.711 5.604 33.628 48.026 56.418 55.857 78.160	0.022 0.003 0.042 0.029 0.182 0.083 0.528 Sam 0.000 0.004 0.007 0.013 0.024 0.057 0.015 0.137 4.753 0.096	8.087 17.371 4.762 1.056 0.000 0.000 0.000 0.000 99.968 91.322 88.920 8.435 4.617 0.000 0.000 0.000 0.000 0.000 0.000	36~38 12~15 4-7 1~3 2~5 30 °C/1 h 12.5 ~1 51 ~1.5 4~7 1~3 ~1.5 4~7 1~3 ~1.5 2~5	53 10~13) 13 14~16	Be Be Be-Ti binary intermetallic compounds Ti supersaturated solid solution (Be is both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds TiCu Ti ₃ Cu ₄ TiCu ₄ CrZrCu alloy Be Be ₁₂ Ti+Be ₁₀ Ti Be ₁₇ Ti ₂ Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be is main solute) Ti supersaturated solid solution (Be and Cu both are main solute) with Ti-Cu binary and Be-Ti-Cu ternary intermetallic compounds Ti ₂ Cu Ti ₂ Cu

表 2 不同工艺 HIP 连接以 50 μm Ti 箔为中间层的 Be/ CuCrZr 连接接头处组织的化学成分(Be 为差值法) Table 2 Results of EPMA analysis of interdiffusion layers zone in the Be/CuCrZr joints with 50 μm Ti interlayer bonded at different HIP parameters (Be gained by the balance method)

			Sam	ple 5# (83	0 °C/2 I	1)		
Layer 1	0.041	0.127	0.001	99.831			Be	
Layer 2	8.493	0.091	0.006	91.410	12.5	1.4	Be ₁₂ Ti+Be ₁₀ Ti	
Layer 3	11.683	0.062	0.004	88.252	1~3	14		Be ₁₇ Ti ₂
I 4 (P' + + '11')							Ti supersatura	ated solid solution (Be and Cu
Layer 4 (Fine eutectoid-like	86.509 7.224	0.039	6.228	49		both are main solute) with Ti-Cu binary and		
microstructure)							Be-Ti-Cu ternary intermetallic compounds	
Layer 5	24.962	48.892	0.021	26.125	1~2	15~18	TiCu ₂ Be ^a	
Layer 6	26.172	73.796	0.032	0.000	6~9		TiCu ₄ +28%Ti ₂ Cu ₃	
Layer 7	23.748	76.171	0.081	0.000	2~3		TiCu ₄ +6% Ti ₂ Cu ₃	
Layer 8	27.400	69.108	3.493	0.000	1~2		TiCu ₄ +28% Ti ₂ (Cu,Cr) ₃ ^a	
Layer 9	20.724	79.138	0.139	0.000	2~5		TiCu ₄	
Layer 10	2.531	97.216	0.253	0.000			CrZrCu alloy	
Sample 6# (850 °C/2 h)								
Layer 1	0.042	0.362	0.003	99.593		<i>.</i>	Ве	
Layer 2	8.690	0.186	0.004	91.120	17		Be ₁₂ Ti+Be ₁₀ Ti	
Layer 3	33.748	10.521	0.009	55.722	2~4	20	Ti ₃ CuBe ₅ ^a	
			0.105			Ti supersatura	ated solid solution (Be and Cu	
Base	86.672	5.145	0.047	8.137			bo	th are main solute)
Layer 4	19.987	78.182	0.046	1.785			TiCu ₄	
(Coarsening	19.703	77.255	0.021	3.021		10	TiCu ₄	
eutectoid-like	47.390	48.953	0.032	3.625		42	TiCu	Ti-Cu binary and Be-Ti-Cu
microstructure)	50.359	47.501	0.028	2.112			TiCu	ternary intermetallic
	38.727	11.937	0.023	49.913			Ti ₄ CuBe ₅ ^a	compounds
	62.493	20.869	0.011	16.627			Ti ₁₂ Cu ₄ Be ₃ ^a	
Layer 5	56.605	22.284	0.023	21.088	2~3	16~21		Ti _{2.5} CuBe ^a
Layer 6	14.697	69.812	0.044	15.447	8~12		TiCu ₅ Be ^a	
Layer 7	23.271	76.652	0.077	0.000	2~3		TiCu ₄ +6% Ti ₂ Cu ₃	
Layer 8	22.570	74.280	3.151	0.000	2~3		TiCu ₄ +6% Ti ₂ (Cu,Cr) ₃ ^a	
Layer 9	21.204	78.637	0.159	0.000	2~5		TiCu ₄	
Laver 10	2.723	97.093	0.184	0.000			CrZrCu allov	

^aDue to absence of Be-Ti-Cu ternary phase diagram, it is merely atom ratio or annotation according to binary phase diagram; ^bThe compositions are chemical composition of single analysis point, and the others is average value of 3 or 6 analysis points which are approximated to each other

在 Ti/CuCrZr 界面反应区,1#(780 ℃/2 h)和 3#(830 ℃/0.5 h)样品生成 3 层扩散层,分别见图 1a 标识 4~7 所示和图 1c 标识 5~7。从 Ti→CuCrZr 扩散层化学成分均依次为 TiCu, Ti₃Cu₄和 TiCu₄,见表 2。在最初形成的化合物没有 Ti₂Cu,因此 Ti/CuCrZr 界面反应扩散过程也主要受控于界面动力学条件。另外,最初形成的扩散层中没有 Ti₂Cu₃,是由于 Ti₂Cu₃ 与 Ti₃Cu₄ 化学计量比相当,即通量条件接近,但 Ti₂Cu₃形成热大于 Ti₃Cu₄,故形成了热力学更为有利的 Ti₃Cu₄。

2# (800 ℃/2 h)和 4# (830 ℃/1 h)样品 Ti/CuCrZr 界 面反应区生成了 5 层扩散层,分别见图 1b 标识 5~9 和 图 1d 标识 6~9。除了 TiCu, Ti₃Cu₄和 TiCu₄以外,在 Ti/TiCu, Ti₃Cu₄/TiCu₄之间又生成了新的扩散层 Ti₂Cu 和 Ti₂(Cu,Cr)₃,见表 2。Ti/TiCu 界面形成 Ti₂Cu,遵循 通量-能量法则,但 Ti₃Cu₄/TiCu₄ 界面形成 Ti₂(Cu,Cr)₃ 是由于连接后期 Cr 元素富集造成的。 5# (830 ℃/2 h)样品 Ti/CuCrZr 界面反应区扩散层 仍为 5 层,见图 1e 标识 5~9,从 Ti→CuCrZr,扩散层 依次为 TiCu₂Be,TiCu₄+28%Ti₂Cu₃,TiCu₄+6%Ti₂Cu₃, TiCu₄+28%Ti₂(Cu,Cr)₃和 TiCu₄,见表 2。除第 9 层扩 散层仍为 TiCu₄以外,其余 4 层与 2# (800 ℃/2 h)和 4# (830 ℃/1 h)样品的完全不同。5# (830 ℃/2 h)样品与 4# (830 ℃/1 h)样品相比连接温度相同,仅时间延长, 因此连接初期 5# (830 ℃/2 h)样品扩散层应与 4# (830 ℃/2 h)样品完全相同。不难理解,随着连接时间的延 长,Be 元素扩散进入 Ti₂Cu 层导致 Ti₂Cu 转变为 TiCu₂Be,但值得探讨的是连接后期第 2 至第 4 扩散层 Cu 含量升高过程。

反应扩散过程中各相层之间不存在两相区^[24],因此,根据化学成分注解的 5# (830 ℃/2 h)样品第 2 至第 4 扩散层室温相 TiCu₄+28%Ti₂Cu₃, TiCu₄+6%Ti₂Cu₃, TiCu₄+28%Ti₂(Cu,Cr)₃ 不是 HIP 时的高温相。根据 Ti-

Cu 二元合金相图^[23],共晶反应 L↔TiCu₂+ β TiCu₄,共 晶点化学成分为73 at%Cu,包晶反应 L+(Cu)↔ β TiCu₄, 包晶点化学成分为77 at%Cu。5# (830 ℃/2 h)样品第2 层 Cu含量为73.796 at%,第3 层 Cu含量为76.171 at%, 第4层 Cu+Cr 含量为72.601 at%,见表2,均为共晶 点或者包晶点化学成分,这意味着 5# (830 ℃/2 h)样品 连接后期第2至第4扩散层出现液相,Cu含量升高过 程与液相有关。5# (830 ℃/2 h)样品连接温度仅为830 ℃,Be-Ti平衡相图出现液相最低温度为875±10 ℃^[23], 表明 HIP 时130 MPa 压力增加了体系内能导致相变温 度大幅度降低。另5# (830 ℃/2 h)样品第3 层 Cu含量 76.171 at%,即高于第2 层的73.796 at%,也高于第4 层的 Cu+Cr含量72.601 at%,Cu浓度梯度不再是沿扩 散方向逐渐递减。

6# (850 ℃/2 h) 样品的 5 层扩散层,见图 1f标 识 5~9,从 Ti→CuCrZr,扩散层依次为 Ti_{2.5}CuBe, TiCu₅Be,TiCu₄+6%Ti₂Cu₃,TiCu₄+6%Ti₂(Cu,Cr)₃和 TiCu₄,见表 2。与 5# (830℃/2 h)样品相比,6# (850 ℃/2 h)样品连接温度升高,Be 原子扩散进入第 2 层,第 1 层 Be 含量也增加。并且,第 4 层 Cu 含量继续升高, Cu+Cr 含量为 77.351 at%,也达到包晶点 L(77 at%Cu) 的化学成分,见表 2。

2.2.3 中间层 Ti

中间层 Ti 区形成了两种组织,一种是 Ti 基体上不 均匀分布着少量条形析出物的组织,如图 1a 标识 3, 图 1b 标识 3 和图 1c 标识 3 所示,析出物厚度小于 1 µm, 长度几微米至十几微米不等,本文将其定义为亚析出组 织。另一种是 Ti 基体上均匀分布着大量条形析出物组 织,如图 1b 标识 4,图 1c 标识 4,图 1d 标识 5,图 1e 标识 4,图 1f 标识 4 所示,本文将其定义为类共析组 织。2# (800 °C/2 h)至 5# (830 °C/2 h)样品类共析组织细 小,析出相厚度为 0.2~0.8 µm,彼此间距为 0.2~0.5 µm, 6# (850 °C/2 h)样品类共析组织粗化,析出物厚度为 1~2 µm,彼此间距多在 2 µm 以上。需要说明的是 EPMA 分辨率通常在 1 µm 左右^[25],亚析出组织中析出相厚度 小于 1 µm,故其成分分析为含 Ti 基体的成分。同理, EPMA 成分分析不能区分 2# (800 °C/2 h)至 5# (830 °C/ 2 h)样品细小的类共析组织中的基体和析出物。

亚析出组织基体为 Ti 超饱和固溶体,主要固溶元 素为 Be, 另固溶很少的 Cu 和 Cr, 析出相中的 Be 含 量远高于基体,应为 Be-Ti 二元金属间化合物,见表 2。 因此,亚共析组织的形成主要是 Be 元素扩散造成的, 反映出 Be 元素的扩散进程。4# (830 ℃/1 h)样品没有 分布第二相的 Ti 基体,见图 1d 标识 4,也是主要固 溶 Be 元素的 Ti 超饱和固溶体,见表 2。类共析组织 除了含有大量的 Be 元素还含有大量的 Cu 元素,见表 2,因此,类共析析组织的形成主要是 Cu 元素扩散进 入亚共析组织后造成的,代表着 Cu 元素的扩散进程。 1#(780 ℃/2 h)样品中间层 Ti 为单一亚析出组织,表明 Be 在 Ti 中的扩散速率远大于 Cu 在 Ti 中的扩散速率。 随着连接温度的升高和时间的延长,代表 Cu 扩散进程 的类共析组织逐渐取代了亚析出组织。从 6#(850 ℃/2 h)样品粗化的类共析组织 Ti 基体和析出相成分来看, 类共析组织中基体为 Ti 超饱和固溶体,主要固溶元素 除 Be 以外,还有 Cu,以及少量的 Cr 元素,析出物是 Ti-Cu 二元或 Be-Ti-Cu 三元金属间化合物,见表 2。 2.2.4 Be/Ti 和 Ti/CuCrZr 界面的 Kirkendall 效应

1# (780 ℃/2 h)和 3# (830 ℃/0.5 h)样品中间层 Ti 厚度为 53 μm,见表 2,大于原始 Ti 箔厚度 50 μm,表 明具有中间层 Ti 的 Be/CuCrZr 合金 HIP 扩散连接过程 中原始界面发生了迁移,即发生了 Kirkendall 效应^[24]。 随后,Ti 层厚度不断变化,2# (800 ℃/2 h)样品 Ti 层 厚度为 47 μm,4# (830 ℃/1 h)样品为 51 μm,5# (830 ℃/2 h)样品为 49 μm,6# (850 ℃/2 h) 样品为 42 μm, 见表 2,反映了 Be/Ti 和 Ti/CuCrZr 界面反应区形成的 扩散层对元素扩散的影响。

2.3 不同工艺 HIP 下 Be/CuCrZr 连接接头断裂机理

1# (780 ℃/2 h)样品抗拉强度仅为 32.0 MPa, 见表 1, 断口组织为蜂窝状, 见图 2a, 定性分析结果蜂窝 状组织白色区域和黑色区域均主要含有 Ti, Be 元素, 但黑色区域 Ti 计数较白色区域低得多。表明 1# (780 ℃/2 h)样品断裂主要发生在 Be/(Be₁₀Ti+Be₁₂Ti)界面, 并且, 该样品在 Be/(Be₁₀Ti+Be₁₂Ti)界面及 Be₁₀Ti+ Be₁₂Ti 扩散层内部出现微裂纹, 见图 3a, 也反映出 Be/(Be₁₀Ti+Be₁₂Ti)界面是接头组织的薄弱环节。因此, 1# (780 ℃/2 h)样品断裂是由于 Be/Ti 界面连接不牢造 成的, 是扩散不充分的体现。

2# (800 ℃/2 h)样品的抗拉强度为 122.8 MPa,在 6 个样品中最佳。断口组织表现为解理断裂特征,见 图 2b,组织主要含有 Ti,Be 元素,表明该样品断裂 是由 Be₁₀Ti+Be₁₂Ti 扩散层解理造成的。并且,没有发 现 2# (800 ℃/2 h)样品接头组织区域存在微裂纹。

830 ℃连接的 3# (830 ℃/0.5 h), 4# (830 ℃/1 h)和 5# (/830℃/2 h)样品断口形貌非常相似,均由解理组织 和瘤状组织构成,分别见图 2c,图 2e,图 2g,定性分 析结果解理组织均含有 Ti,Cu 元素,瘤状组织均含有 Ti,Cu 和少量 Cr 元素,这表明解理组织是由 Ti-Cu 金 属间化合物断裂造成的,而瘤状组织是由 Ti₂(Cu,Cr)₃ 与其它 Ti-Cu 二元扩散层之间的界面分离造成的。另 外,瘤状组织呈现液相凝固特征,表明 Ti₂(Cu,Cr)₃ 扩

图 2 不同工艺 HIP 连接以 50 µm Ti 箔为中间层的 Be/CuCrZr 连接接头断口组织的 SEM 照片(Be 端)

Fig.2 SEM micrographs of fracture microstructures in the Be/CuCrZr joints with 50 μm Ti interlayer bonded at different HIP parameters (Be ends): (a) 1# (780 °C/2 h), honeycomb-like morphology; (b) 2# (800 °C/2 h), cleavage morphology; (c) 3# (830 °C/0.5 h), magnification of wart-like morphology and cleavage morphology; (d) 3# (830 °C/0.5 h), a lot of wart-like morphology and a little cleavage morphology; (e) 4# (830 °C/1 h), magnification of wart-like morphology and a lot of cleavage morphology, (g) 5# (830 °C/2 h), magnification of wart-like morphology and a lot of cleavage morphology, (g) 5# (830 °C/2 h), magnification of wart-like morphology and cleavage morphology; (i) 6# (850 °C/2 h), honeycomb-like morphology and cleavage morphology and a lot of cleavage morphology (i) 6# (850 °C/2 h), honeycomb-like morphology and cleavage morphology

散层界面局部区域或整个界面出现了液相,这与2.2.2 节5#(830℃/2h)样品从Ti→CuCrZr第2层至第4层 扩散层Cu含量升高与液相有关的结论相印证。在HIP 后降温过程中,液相收缩导致Ti₂(Cu,Cr)₃层与其相邻 扩散层之间的界面结合不牢,接头强度下降。4#(830 ℃/1h)样品连接接头形成的扩散层及各扩散层的厚度 与2#(800℃/1h)样品极其相似,但前者抗拉强度仅为 64.3 MPa,只有后者的一半。

3# (830 ℃/0.5 h)样品接头组织形貌像没有发现 Ti₂(Cu,Cr)₃ 层,见图 1c,但成分面扫描表明 Ti₃Cu₄/ TiCu₄ 界面已富集 Cr 元素,见图 4。这意味着 3# (830 ℃/0.5 h)样品已经开始在 Ti₃Cu₄/TiCu₄ 界面形成 Ti₂(Cu,Cr)₃ 层。通常而言,界面瘤状组织危害更大, 该样品断口组织主要由这种界面分离的瘤状组织构 成,见图 2d,且在 Ti₃Cu₄/TiCu₄ 界面存在微裂纹,见 图 3b,故 3# (830 ℃/0.5 h)样品抗拉强度(49.6 MPa) 较 4# (830 ℃/1 h)样品的降低。4# (830 ℃/1 h)和 5# (830 ℃/2 h)样品断口均是解理组织较多,瘤状组织较 少,分别见图 2f 和图 2h,两个样品接头组织区域均没 有发现微裂纹。但 5# (830 ℃/2 h)样品抗拉强度(46.3 MPa)较 4# (830 ℃/1 h)样品也降低,这意味着 5# (830 ℃/2 h)样品连接接头处内应力较 4# (830 ℃/1 h)样品 的大,即 4# (830 ℃/1 h)样品扩散层厚度较为适宜。

6# (850 ℃/2 h)样品接头组织局部局域不仅沿 TiCu₄+6%Ti₂(Cu,Cr)₃ 层出现微裂纹,沿Ti₃CuBe₅扩散层 也出现了微裂纹,见图3c。该样品断口组织由蜂窝状组 织和解理组织构成,两种组织在断口中所占比例大体相 当,见图2i,定性分析结果蜂窝状组织含有Ti,Be和 Cu3种元素,解理组织主要含有Ti,Be元素,表明断 裂是由(Be₁₀Ti+Be₁₂Ti)/Ti₃CuBe₅界面或Ti₃CuBe₅/Ti界 面分离及Be₁₀Ti+Be₁₂Ti 层解理造成的。6# (850 ℃/2 h) 样品抗拉强度仅为36.2 MPa,比5# (/830 ℃/2 h)样品 的更低,因此相较于Ti₂(Cu,Cr)₃扩散层与其它Ti-Cu 二元扩散层界面分离,Ti₃CuBe₅危害大,这也意味着 Ti₃CuBe₅ 脆性高。值得注意的是Ti/CuCrZr界面反应 区也出现了三组元相TiCu₂Be,Ti_{2.5}CuBe和TiCu₅Be

图 3 不同工艺 HIP 连接以 50 µm Ti 箔为中间层的 Be/CuCrZr 连接接头界面反应区的微裂纹 Fig.3 Cracks in interface diffusion zone of the Be/CuCrZr joints with 50 µm Ti interlayer bonded at different HIP parameters: (a) 1# (780 ℃/2 h), (b) 3# (830 ℃/0.5 h), and (c) 5# (850 ℃/2 h)

- 图 4 3#样品(830 ℃/0.5 h) HIP 连接接头组织 SEM 像和 Cr 元素面分布
- Fig.4 SEM micrograph of 3# (830 °C/0.5 h) HIP bonded joint (a) and element Cr mapping (b)
- 层,但这些三组元相不是样品断裂的原因。

3 结 论

1) 以Ti 箔为中间层的Be/CuCrZr的高温(780 ℃~ 850 ℃)HIP 连接,Be/Ti 界面最初生成Be₁₂Ti 和Be₁₀Ti 混合金属化合物层,然后在(Be₁₂Ti+Be₁₀Ti)/Ti 界面生 成Be₁₇Ti₂。Ti/CuCrZr 界面反应区,最初生成TiCu, Ti₃Cu₄和TiCu₄,然后在Ti/TiCu界面生成Ti₂Cu,在 Ti₃Cu₄/TiCu₄界面生成Ti₂(Cu,Cr)₃。界面反应扩散的产 物和先后顺序符合通量-能量原则。

2) Be 在 Ti 中扩散速率大于 Cu 在 Ti 中的扩散速率。但 Be/Ti 界面反应区生成的高 Be 含量 Ti-Cu-Be 三组元相脆性高,造成接头强度大幅度降低,而 Ti/CuCrZr 界面反应区低 Be 含量的 Ti-Cu-Be 三组元相 脆性低,对连接强度的影响小。

3) HIP 连接工艺参数对以 Ti 箔为中间层的 Be/ CuCrZr 样品接头性能存在明显影响。800 ℃/2 h/130 MPa 连接接头抗拉强度最高,为 122.8 MPa,界面结 合良好且无热裂纹,断裂是由 Be/Ti 界面反应区 Be₁₂Ti+Be₁₀Ti 混合化合物层解理断裂造成的。

参考文献 References

- [1] Goldberg A. Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium, UCRL-TR-224850[R]. Livermore: Lawrence Livermore National Laboratory, CA(USA), 2006
- [2] Tomberlin T A. Beryllium-A Unique Material in Nuclear Applications, INEEL/CON-04-01869[R]. Idaho Falls: Idaho National Engineering and Environmental Laboratory, ID (USA), 2004
- [3] Sherlock P, Peacock A T, Rödig M. Fusion Engineering & Design[J], 2007, 82(15-24): 1806
- [4] Elio F, Ioki K, Utin Y et al. Fusion Engineering & Design[J], 2005, 75-79: 601
- [5] Ma Rui(马锐), Wang Yaohua(王耀华), Wu Jihong(吴继红) et al. Journal of PLA University of Science and Technology, Natural Science Edition(解放军理工大学学报,自然科学 版)[J], 2015, 16(2): 161
- [6] Jacobson L A. Joining Methods for Beryllium: A Survey, DE86012000[R]. Livermore: Lawrence Livermore National

Laboratory, CA(USA), 1986

- [7] Hill M A, Damkroger B K, Dixon R D et al. Beryllium Weldability, DE90014696[R]. Los Alamos: Los Alamos National Laboratory, NM(USA), 1990
- [8] Wang Xisheng(王锡胜), Zhang Pengcheng(张鹏程), Xian Xiaobing(鲜晓斌) et al. Rare Metal Materials and Engineering(稀 有金属材料与工程)[J], 2008, 37(12): 2161
- [9] Odegard B C, Cadden C H , Yang N Y C. Fusion Engineering & Design[J] 1998, 41(1-4): 63
- [10] Lorenzetto P, Cardella A, Daenner W et al. Fusion Engineering & Design[J], 2002, 61-62: 643
- [11] Ye Linsen(叶林森), Chen Jiming(谌继明), Xie Donghua(谢 东华) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2010, 39(1): 122
- [12] Gervash A, Mazul I, Yablokov N et al. Fusion Technology[J], 2000, 38(3): 277
- [13] Mazul I, Alekseev A, Belyakov V et al. Fusion Engineering & Design[J], 2012, 87(5-6): 437
- [14] Ioki K, Elio F, Barabash V et al. Fusion Engineering & Design[J], 2007, 82(15-24): 1774
- [15] Kuroda T, Hatano T, Enoeda M et al. Journal of Nuclear Materials[J], 1998, 258-263(4): 258
- [16] Sherlock P, Peacock A T, Callum A D M et al. Fusion

Engineering & Design[J], 2005, 75: 377

- [17] Saint-Antonin F, Barberi D, Marois G L et al. Journal of Nuclear Materials[J], 1998, 258-263(2): 1973
- [18] Park J Y, Choi B K, Park S Y et al. Fusion Engineering and Design[J], 2007, 82(15-24): 2497
- [19] Chen Guoliang(陈国良), Lin Junpin(林均品). Physical Metallurgy for Ordered Intermetallic Compound Structural Material (有序金属间化合物结构材料物理金属学基础)[M]. Beijing: Metallurgical Industry Press, 1999: 118
- [20] He Peng(何 鹏), Feng Jicai(冯吉才), Qian Yiyu(钱乙余) et al. Transactions of China Welding Institution(焊接学报)[J], 2001, 22(1): 53
- [21] Okamoto H. Journal of Phase Equilibria & Diffusion[J], 2006, 27(5): 540
- [22] Kubaschewski O, Alcock C B. Metallurgical Thermochemistry[M]. Oxford: Pergamon Press, 1979: 193
- [23] Murray J L. Bulletin of Alloy Phase Diagrams[J], 1983, 4(1):81
- [24] Li Jian(李 见). Foundation of Materials Sciences(材料科学 基础)[M]. Beijing: Metallurgical Industry Press, 2006: 353
- [25] Zhang Xiaozhong(章晓中). Electron Microscopy and Aanalysis(电子显微分析术)[M]. Beijing: Tsinghua University Press, 2006: 221

Microstructure Evolution and Fracture Modes of Be/CuCrZr Joints by Hot Isostatics Pressing Bonding at High Temperature

Li Feng¹, Li Zhinian¹, Zhong Jingming¹, Wang Zhanhong¹, He Lijun², Xu Demei¹
(1. State Key Laboratory for Special Rare Metal Materials, Northwest Rare Metal Materials Research Institute Ningxia Co., Ltd, Shizuishan 753000, China)
(2. Key Laboratory of Ningxia for Photovoltaic Material, Ningxia University, Yinchuan 750021, China)

Abstract: Microstructure evolution and fracture modes of Be/CuCrZr joints with 50 μ m Ti interlayer by hot isostatics pressing bonding at high temperature (780~850 °C) for different time (0.5~2 h) were studied by EPMA. The results show that forming process of intermetallic compounds at Be/Ti and Ti/CuCrZr interfaces conforms to Flux-Energy law. The diffusion rate of Be in Ti is greater than that of Cu in Ti. But the Ti-Cu-Be ternary intermetallic compound with high Be content formed in the Be/Ti interface reaction zone is very brittle, which causes the property deterioration of the Be/CuCrZr joint. By contrast, the Ti-Cu-Be ternary intermetallic compounds with low Be content formed in the Ti/CuCrZr interface reaction zone have relatively little influence on Be/CuCrZr joint properties. HIP conditions affect significantly Be/CuCrZr joint properties. The Be/CuCrZr joint bonded by HIP under the condition of 800 °C, 2 h and 130 MPa possesses optimum properties, and its tensile strength is up to 122.8 MPa. The joint exhibits the good bonding interface without hot cracks, and the fracture of the joint is caused by cleavage fracture of Be₁₂Ti+Be₁₀Ti mixed intermetallic compound layer.

Key words: beryllium; CuCrZr; hot isostatics pressing bonding; microstructure evolution; fracture modes

Corresponding author: Xu Demei, Ph. D., Professorate Senior Engineer, State Key Laboratory for Special Rare Metal Materials, Northwest Rare Metal Materials Research Institute Ningxia Co., Ltd, Shizuishan 753000, P. R. China, Tel: 0086-952-2098467, E-mail: xdm405@163.com