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Abstract: In hot stamping, the high strength aluminum alloy AA7075 blank was first fully solutionized and t hen transferred 

into room temperature tools for stamping and quenching. To characterize the AA7075 alloy hot deformation behavior, tensile 

tests employing the heating path representative of the hot stamping process were performed over a temperature range of 

200~480 °C and a strain rate range of 0.01~10 s
-1

. Modified constitutive models based on the Arrhenius type model, 

Johnson-Cook model and Zerilli-Armstrong model were proposed and calibrated using the hot tensile test data. The proposed 

models coupled the effects of strain, strain rate and temperature on flow stress by expressing the model parameters as 

polynomial functions of strain, strain rate and temperature. The prediction accuracy of the constitutive models for flow stress 

was evaluated by the mean square error (MSE) and the correlation coefficient R value. The results indicate that the modified 

Johnson-Cook model can provide the most accurate prediction for the AA7075 hot flow behavior. 
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AA7075 is a typical Al-Zn-Mg-Cu alloy widely used in 

aircraft due to its excellent strength-to-weight ratio
[1]

 which also 

shows great potential in vehicle weight reduction. However, its 

application is restricted by the low ambient temperature ductility. 

Hot stamping of AA7075 aluminum sheet alloy was developed 

for manufacturing complex shape structural components taking 

the advantage of improved formability at elevated 

temperatures
[2]

. In the hot stamping process, the blank was 

preheated to approximately 480 °C, fully solutionized, and then 

rapidly transferred into room temperature tools and stamped. 

Simultaneous quench was obtained during forming, which is 

essential to attain the high strength for subsequent artificial 

aging treatment
[3]

. Finite element analysis (FEA) has been 

widely used to simulate metal forming processes. Simulation 

accuracy largely relies on the constitutive relation, Young’s 

modulus, Lankford parameters and other material properties 

defined in the FEA model. For the hot stamping FEA case, it is 

more complicated as a thermo-mechanical coupling process
[4]

. A 

constitutive model is required to provide accurate predictions of 

the flow curves over the wide range of temperature and strain 

rate in hot stamping
[4]

. 

Isothermal hot stretching, compression and torsion tests 

have been performed over various temperature and strain 

rate ranges to investigate the AA7075 aluminum alloy’s hot 

deformation behavior
[5-14]

, workability
[7,15-22]

 and 

microstructure evolution 
[13,17,19,22-25]

. Based on the 

experimental results, constitutive models such as the power 

law type equations
[12]

, Arrhenius type equations combined 

with Zener-Holloman parameter
[5,6,17,22,26-30]

, Johnson-Cook 

(JC) model
[21,25,29,31]

, Zerilli-Armstrong (ZA) model
[31]

 and 

artificial neural network (ANN) model
[32]

 were employed to 

describe the flow behavior of AA7075 at elevated 

temperatures. The ANN model application is restricted as it 

is too complicated for FEA integration at present. The 
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calibrated constants of the same type model varied with 

material form, heat treatments, temperatures and strain rates 

applied in different characterization studies.  

The Arrhenius type model and JC model are two typical 

empirical constitutive models commonly used for 

describing static or dynamic flow behaviors at elevated 

temperatures. The widely applied Arrhenius type model 

with Zener-Hollomon parameter is as follows: 
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where Z  is the Zener-Hollomon parameter,   is the 

strain rate in s
-1

, Q  is the activation energy of hot 

deformation in kJ/mol, R  is the universal gas constant 

which is 8.31 J/(mol·K), T  is the temperature in K,   is 

the equivalent true stress at given strain in MPa,  ,  , 

n , 
1n  and A  are material constants, and 

1/ n  . 

However, the original model is restricted to the prediction 

for peak flow stress as the strain effect is ignored.  

The original JC and its modified models have been 

widely used in describing constitutive relations for various 

materials over a wide range of temperature and strain rate, 

such as steel
[33-42]

, titanium
[43,44]

 and titanium matrix 

composites
[45]

, aluminum
[21,25,29,31,46,47]

, magnesium
[48,49]

 and 

other alloys
[50]

. The original JC model
[51]

 consists of three 

items expressing the strain hardening, strain rate and 

temperature dependence: 
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where  ,  , and T  are the same as those in the Arrhenius type 

model, 
refT  is the reference temperature in K,   is equivalent 

true plastic strain, 
MeltT  is the material melt temperature in K, 

ref  is the reference strain rate in s
-1
, A  is the yield stress at 

reference temperature and reference strain rate in MPa, B  is the 

strain hardening coefficient in MPa, n  is the strain hardening 

exponent, C  is the strain rate hardening coefficient and m  is the 

temperature softening coefficient. The decoupled effect simplifies 

the constants acquisition process but usually leads to a loss of 

prediction accuracy as it assumes constant strain hardening and 

strain rate hardening at different temperatures.  

The ZA model is a physical based model which has been 

widely applied in flow stress calculation for hot 

deformation
[29,31,37,44]

. The original ZA model
[52,53]

 is 

represented as Eq.(6), which is constructed for face centered 

cubic (fcc) and body centered cubic (bcc) metals separately: 
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where  ,  ,  , 
ref  and T  are the same as those in 

the JC model, 
0C , 

1C , 
2C , 

3C , 
4C , 

5C  and n  are 

material constants. The temperature and strain rate effects 

are coupled in the ZA model which is usually used to 

predict stress in the temperature range from room 

temperature to 
Melt0.6T

[53]
. 

In the study of Trimble and O’Donnell 
[29]

, the constitutive 

modeling works for AA7075 were summarized. Different 

models were compared for predicting the flow stress over a 

temperature range of 250~450 °C and a strain rate range of 

10
-3

~10
2
 s

-1
. And a new model was proposed which can 

provide consistent predictions with the experiment results. It 

is difficult to establish a unified constitutive model to 

accurately predict the flow behavior of AA7075 in different 

forms under various deformation conditions. And few 

constitutive studies have been performed for AA7075 hot 

stamping, which need to consider the solution heat treatment 

and the quench effects. A heating path representative of the 

hot stamping process is very necessary for the tensile tests to 

obtain the true stress-true strain curves.  

This study aimed to establish a constitutive model for the 

AA7075 aluminum sheet alloy which covered the deformation 

conditions (200~480 °C, 0.01~10 s
-1

) determined by previous 

B-pillar hot stamping researches
[2,4]

. The Arrhenius type model 

combined with Zener-Holloman parameter, JC model and the 

physical based ZA model were modified and calibrated to 

predict the AA7075 flow behavior over the wide range of 

temperature and strain rate in hot stamping. And the prediction 

accuracy was evaluated by calculating the mean square error 

(MSE) and the correlation coefficient R value with the 

predicted and experimental results. 

1 Experiment 

1.1  Material properties 

The room temperature material properties of the 

as-received 2 mm thick AA7075-T6 blank for tensile tests 

are presented in Table 1
[2]

. 

1.2  Experimental procedures 

The experiment matrix is given in Table 2. 

 

Table 1  As-received material properties of AA7075-T6 
[2]

 

Property Value 

Ultimate tensile strength/MPa 577 

Tensile yield strength (0.2% offset)/MPa 531 

Uniform elongation/% 8.6 

Total elongation/% 11.5 

Thermal conductivity/%IACS 32.3 

Rockwell B hardness 91 
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Table 2  Experiment matrix for AA7075 hot tensile test 

Condition Value 

Orientation Longitudinal, diagonal, transverse 

Stain rate/s
-1

 0.01, 0.1, 1, 10 

Temperature/°C 200, 280, 360, 400, 440, 480 

 

Fig.1a is the tensile specimen geometry designed 

according to the standard ASTM E08. And Fig.1b shows the 

grips used in the tensile test. 

The heating path and apparatus applied in the tensile tests are 

shown in Fig.2. A Pyradia furnace was used for supersaturated 

solid solution treatment (12 min at 500 °C). In the salt bath, a 

rapid quench representing the die quench in hot stamping was 

attained, as shown in Fig.2, which has a comparable cooling rate 

to die quenching
[3]

. The salt bath was 20±5 °C above the test 

temperature to compensate for the heat loss during transfer. In the 

480 °C tensile tests, the samples were transferred directly from 

 

 

 

 

 

 

 

 

Fig.1  Design of hot tensile test sample (a) and grips (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2  Schematic diagram of the AA7075 hot tensile test heating 

path 

 

the Pyradia furnace into the environmental chamber and 

mounted into the grips installed on an MTS RT100 mechanical 

tensile testing machine. 

1.3  Experimental results 

The flow curves of different orientations show little 

difference. So only one representative true stress-true strain 

curve for each combination of temperature and strain rate is 

plotted in Fig.3. The strain rate dependence is obvious at  

360 °C and higher temperatures. And the flow stress drops 

with increasing the temperature at all strain rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3  True stress-true strain curves of AA7075-W at different temperatures: (a) 200 °C, (b) 280 °C, (c) 360 °C, (d) 400 °C, (e) 440 °C, 

and (f) 480 °C 
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2 Constitutive Models 

The true stress and true strain data have been processed 

by the following steps to obtain true stress versus effective 

plastic true strain for constitutive modeling: 

1) The as-received true stress vs. true strain data was 

grouped by condition. Data from all samples with the same 

condition was joined and analyzed together. 

2) Strain for one data point was selected to split the data 

into an elastic portion with strains less than or equal to the 

selected strain and elastic-plastic portion with strains more 

than the selected strain.  

3) Linear least square (LLS) fit was performed on the 

elastic data.  

4) Quadratic polynomial least square fit was performed 

using the elastic-plastic data. 

5) Steps 2~4 were repeated to find strain point that 

minimized average residual for both the linear and 

quadratic fits. Resultant segregation for one condition is 

shown in Fig.4 

6) The effective plastic strain for the elastic-plastic 

portion was calculated as follows: 

eff true true / E                             (7) 

7) For constitutive equation fitting, data points were 

selected on each true stress vs. effective plastic strain curve 

with a strain interval of 0.02. 

The processed true stress vs. effective plastic strain 

curves and the data points for constitutive equation 

calibration are shown in Fig.5. 

Modified constitutive models based on the Arrhenius 

type equation combined with Zener-Holloman parameter, 

JC model and ZA model were proposed and fitted with the 

true stress vs. effective plastic strain data points given in 

Fig.5. The reference temperature and strain rate were 473 K 

and 0.01 s
-1

 for all models, respectively. 

2.1  Modified Arrhenius type model 

The Arrhenius type equation with Zener-Holloman 

parameter given by Eq.(1~4) shows that the flow stress can 

be expressed as a function of α, Z, A and n.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Example of calculation of the effective plastic strain at  

200 °C and 0.1 s
-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5  True stress versus effective plastic strain curves of AA7075-W at different temperatures: (a) 200 °C, (b) 280 °C, (c) 360 °C, (d) 400 °C,  

(e) 440 °C, and (f) 480 °C 
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Replacing  F   in Eq.(2) with 1n ,  exp   and 

  sinh
n

 , and taking the natural logarithm on both sides, 

corresponding relations are obtained: 

1ln ln ln
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At a given strain of 0.1, ln -ln   and -ln   at 

different temperatures are shown in Fig.6a and Fig.6b, 

respectively. 
11/ n  and 1/   were determined as the slope 

of the plot by linear fitting. Then   at different temperatures 

was obtained as 
1/ n   which can be expressed as a 

polynomial function of temperature as follows: 
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Taking n  into Eq.(10),   ln sinh -1 /Rn T  at 

different strain rates is calculated, as shown in Fig.6d. At a 

given strain rate, Q  is expressed as: 
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The coefficient 
iQ  is strain rate related: 
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As the strain effect on stress is ignored, the original 

Arrhenius type equation is usually used to predict the peak 

stress. Small impact will be made on the stress prediction for 

steady flow curves at relatively low strain rate and high 

temperatures, as shown in Fig.5e and 5f. But the strain effect 

must to be considered because the strain hardening behavior 

of AA7075 is obvious below 280 °C, as shown in Fig.5a and 

5b. The above calibration process was repeated at the strains 

ranging from 0 to 0.98 with an interval of 0.02. The data 

shown in Fig.5 was applied for calibration. And it was 

assumed that the true stress is constant at the strains between 

the maximum effective plastic strain and 0.98 for curves 

which have a maximum strain less than 0.98. The acquired 

equation coefficients can be expressed as polynomial 

functions of the effective plastic strain as follows: 
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Fig.6  Plots of ln -ln  (a), -ln  (b),   ln sinh - ln  (c) and   ln sinh -1/Rn T (d) at strain of 0.1 
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The constitutive relation is given by Eq.(4) and the 

parameters are defined as functions of temperature, strain 

rate and strain, as expressed in Eq.(11~20). The calibrated 

model constants are plotted in Fig.7, where 1~ 6P P , 

7 ~ 12P P , 13 ~ 18P P  and 19 ~ 24P P  represent 
ik , 

ikn , 
ijkQ  and 

ijkA , respectively. 

2.2  Modified Johnson-Cook model 

The strain hardening is defined by a power law equation in 

the original JC model as Eq.(5). And the strain, strain rate 

and temperature effects are isolated. Lin et al
[36]

 proposed a 

modified JC model employing a quadratic polynomial 

function for strain hardening and an exponential term, which 

couples the strain rate and temperature effects as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  Calibrated constants of the modified Arrhenius type model  
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where 
1A , 

1B , 
2B , 

1C , 
1  and 

2  are constants, 
*

refT T T  , 
*

ref/     . The flow behavior of a typical 

high-strength alloy steel at high temperatures was accurately 

predicted with the modified JC model. Trimble et al
[29]

 also 

applied it to predict the AA7075 hot compression flow curves 

but the prediction was not accurate over the entire strain rate 

and temperature range. 

In both the original and modified JC models, it was assumed 

that the strain hardening is constant at different temperatures 

and strain rates. And the coefficients were fitted with the flow 

curve at the reference strain rate and temperature. In the 

constitutive studies performed by Trimble
[29]

 and Lin et al
[36]

, 

the flow curves were consistently steady or linearly increased 

under all conditions, which is suited to employ the fixed strain 

hardening constants. However, the AA7075 hot stamping 

deformation behavior in this study is very different as obvious 

nonlinear strain hardening was observed below 280 °C and at 

strain rate of 10 s
-1

 at 360 and 400 °C, as shown in Fig.3. The 

strain hardening constants should be temperature and strain 

rate dependent. 

Based on the quadratic polynomial form strain hardening 

item proposed by Lin et al
[36]

, the flow curve of each 

combination of temperature and strain rate can be fitted with 

the polynomial equation as follows: 
4 3 2

1 2 3 4 5A A A A A                        (22) 

iA  vs. 
*ln  is plotted in Fig.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8  Plots of *-lniA  : (a) 
*

1-lnA  , (b) 
*

2-lnA  , (c) 
*

3-lnA  , (d) 
*

4-lnA  , and (e) 
*

5-lnA   
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For each temperature, *-lniA   was fitted with a 

polynomial equation: 

4 4

1
ln j

i ijj
A A  


                            (23) 

The parameter 
ijA  in Eq.(23) is temperature dependent 

and can be expressed as: 

66 *

1

k

ij ijkk
A A T




                           (24) 

where    *

ref Melt ref/T T T T T    and 
Melt 893 KT  . 

The strain, strain rate and temperature effects are coupled 

in the proposed model as Eq.(22~24). The calibrated 

equation constants are plotted in Fig.9, where 1~ 20P P  

represent 
ijkA . 

2.3  Modified Zerilli-Armstrong model 

Samantaray et al
[37]

 modified the original ZA model and 

successfully applied it in stress prediction for a 

titanium-modified austenitic stainless steel and a modified 

9Cr–1Mo steel
[33]

. The modified model is as follows: 

     * * *

1 2 3 4 5 6= exp lnnC C C C T C C T        
 

 (2 5 ) 

where 
1C , 

2C , 
3C , 

4C , 
5C , 

6C  and n  are constants. 

The flow curve at reference temperature and strain rate was 

employed to calibrate the strain hardening coefficients 
1C , 

2C  and n  which were assumed consistent under all 

conditions. Zhan
[44]

, Li
[54]

, Trimble
[29]

, and Li et al
[55]

 

employed this modified ZA model for predicting the flow 

behavior of titanium alloy, aluminum alloy and steel. But 

the prediction accuracy decreases for higher strain rates 

and lower temperatures at which the flow curves show 

strong strain hardening behavior. 

Based on the modified ZA model given in Eq.(25), a 

model coupling the strain, strain rate and temperature 

effect can be proposed: 

     * * * * *= ,ln exp ,ln , , lnA B T C T       
 

     (26) 

Taking the natural logarithm on both sides, it can be 

expressed as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9  Calibrated constants of modified JC model 

     * * * * *ln =ln ,ln , ln , , lnA B T C T         
 

   (27 ) 

*ln -ln   at a given strain of 0.1 for different 

temperatures is plotted in Fig.10. And  *,C T  is the 

slope of 
*ln -ln  . 

As shown in Fig.11,   *,C T  can be expressed as a 

polynomial function of   and 
*T : 

 
5,3, 5* *

0, 0
,

i j i j

iji j
C T C T 

 

 
                   (28) 

  * * *

ln , ln -C T T    at a given strain of 0.1 at 

different strain rates is plotted in Fig.12.  * *

ln , lnC T    

can be expressed as a polynomial function of 
*T : 

   
4* * * * *4

1
ln , ln , ln i

i i
C T T D T     


       (29) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10  Plots of *ln -ln   at strain of 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11  Plots of 
*- ,  C T  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12  Plots of   * * *

ln , ln -C T T    at strain of 0.1 
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Fig.13  Plots of *- ,lnnD   : (a) *

1- ,lnD   , (b) *

2- ,lnD   , (c) *

3- ,lnD    and (d) 
*

4- ,lnD    

 

 * *, ln ,B T   and  *, lnA    can be expressed as: 

   
* 3* * * *4

1
, ln , , ln i

i i
B T D T    


            (30) 

   * *

4, ln exp ,lnA D    
 

                  (31) 

As shown in Fig.13,  *, ln -nD     and 
*ln  is fitted 

with a polynomial equation: 

 
5,3, 5* *

0, 0
, ln ln

i j i j

n niji j
D D   

 

 
               (32) 

The calibrated constants of the modified ZA model are 

plotted in Fig.14, where 1~ 18P P  represent 

 0 ~ 5,  0 ~ 3,  5ij i j i j    . 

3 Results and Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14  Calibrated constants of the modified ZA model 

The flow curves predicted by the proposed models are 

compared with the experimental results, as shown in Fig.15. 

To evaluate the model prediction accuracy, the MSE and 

correlation coefficient R value of each model are calculated 

using Eq.(33) and Eq.(34): 

 
2

1

1
ˆMSE

n

i iin
 


                        (33) 

  

   

1

22

1 1

ˆ ˆ

ˆ ˆ

n

i ii

n n

i ii i

R
   

   



 

 


 



 
             (34) 

where n  is the number of picked data points of one true 

stress vs. effective plastic strain curve,   and ̂  are the 

experimental and predicted true stress in MPa, and   and 

̂  are the mean experimental and predicted true stresses in 

MPa, respectively. The results are plotted in Fig.16 and Fig.17. 

The modified Arrhenius model MSE for the entire tensile 

dataset is 43.00 and the R value is 0.9955. The prediction is 

in good agreement with the experiment for temperatures 

above 280 °C. Fig.16a shows that the prediction accuracy 

decreases for the stress above 150 MPa. The MSE for each 

temperature and strain rate shown in Fig.17a indicates that 

the prediction accuracy increases for higher temperature. 

The strain hardening is not well described though the strain 

effect is coupled by introducing strain related polynomial 

functions. A more precise relation needs to be defined to 

couple the strain effect. 

The total MSE of the modified JC model is 0.0715 and R 

value is almost 1. The correlation between the experiments 

and predictions shown in Fig.16b shows that the predicted 
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results are in good accordance with the experimental results. 

The effects of strain, strain rate and temperature are well 

described by the polynomial functions. 

The total MSE of the modified ZA model is 27.40 and the 

R value is 0.9967. The model can provide good predictions 

for most flow curves. But the accuracy is lower than that of 

the modified JC model. The MSE for each strain rate and 

temperature is shown in Fig.17c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15  Predicted true stress versus true strain curves using the modified models: (a) 200 °C, (b) 280 °C, (c) 360 °C, (d) 400 °C, (e) 440 °C, 

and (f) 480 °C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.16  Correlation between the predicted stress by the modified Arrhenius type (a), JC (b) and ZA (c)  models and the experimental results 
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Fig.17  MSE of the modified Arrhenius type (a), JC (b) and ZA (c) 

models at different temperatures and strain rates 

 

4 Conclusions 

1) The modified Arrhenius type equation combined with 

Zener-Holloman parameter can provide accurate predictions 

for the stress at lower strain rates and higher temperatures. 

The prediction accuracy is improved with increasing the 

temperature. The strain effects can be coupled by applying 

polynomial equations for expressing the model parameters. 

2) The modified JC model provides the best prediction by 

replacing the original strain hardening item with a 

polynomial function. The strain, strain rate and temperature 

effects can be coupled by expressing the strain hardening 

coefficients as a polynomial equation of temperature and 

strain rate. The modified JC model can provide an 

adequately accurate description for the hot tensile behavior 

of the AA7075 sheet alloy. 

3) The modified ZA model can provide better prediction 

than the modified Arrhenius type equation in describing 

flow behavior at 200 °C. Fewer constants need to be 

calibrated and the prediction results are not consistently 

precise. 
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AA7075 高强铝合金热冲压流变行为本构模型对比研究 
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3
 

(1. 南京航空航天大学，江苏 南京 210016) 
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(3. 加拿大国家研究委员会，加拿大 魁北克 希库蒂米 G7H 8C3) 

 

摘  要：在热冲压过程中，AA7075 高强铝合金板料经充分固溶后移入室温模具进行冲压成形并淬火。为表征 AA7075 铝合金在热

冲压工艺中的变形行为，在温度 200~480 ℃、应变速率 0.01~10 s
-1 范围内进行了高温拉伸试验。基于 Arrhenius 类型本构模型、

Johnson-Cook 模型以及 Zerilli-Armstrong 模型提出了多种修正本构模型，并应用实验所获流变曲线进行了拟合。提出的修正模型通

过将模型参数表示为应变、应变速率及温度相关的多项式函数耦合了应变、应变速率及温度对流变应力的影响，并通过均方误差

（MSE）以及相关系数 R 值对模型流变应力预测准确性进行了评价。结果表明，修正的 Johnson-Cook 模型能够更加准确的预测

AA7075 高温流变行为。 

关键词：AA7075高强铝合金；热拉伸流变行为；本构模型 
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