FGH97 合金连续冷却过程中 y'相的析出行为

周 宣¹,李宇力¹,马腾飞¹,张于胜¹,赖运金²,王凯旋³,刘向红³,张平祥¹

(1. 西北有色金属研究院,陕西 西安 710016)(2. 西安欧中材料科技有限公司,陕西 西安 710018)(3. 西部超导材料科技股份有限公司,陕西 西安 710018)

摘 要:为了研究固溶冷却速度对粉末高温合金 FGH97 的 y'相析出行为的影响,利用 Gleeble-3800 热模拟试验机以及 模拟热处理炉获得了 15~240 ℃/min 的冷却速度,主要分析了不同冷却速度对二次 y'相尺寸、形貌以及合金力学性能的 影响。研究发现,二次 y'相在冷却过程中发生析出、长大,甚至是粗化,并且其形貌、尺寸以及析出温度、析出范围主 要取决于冷却速度,而时效处理几乎没有影响。在 15 ℃/min 的较低冷速下,二次 y'相发生粗化并分裂,形成 0.38 µm 左右的方形颗粒,这些二次相周围还会析出三次 y'相;而当冷却速度达到 60 ℃/min 时,二次 y'相尺寸降至 0.22 µm 左 右,三次 y'相析出则被完全抑制。在析出相含量、尺寸以及 y/y'错配度的共同作用下,合金强度随着冷却速度的增加呈 现出先降低后升高的趋势。

关键词:高温合金;冷却速度; y'相;析出行为 **中图法分类号:** TG146.1⁺5; TG132.3⁺3 **文献标识码:** A **文章编号:** 1002-185X(2020)06-2147-07

析出强化型镍基高温合金具有优异的高温力学性能 和耐高温氧化的能力,广泛应用于电站和航空领域^[1-3]。 这类合金的基体为面心立方(fcc)结构的γ相,其内 部弥散分布的强化相γ'-Ni₃Al或γ"-Ni₃Nb对位错运动 都有很强的抑制作用^[4]。体心四方结构的γ"-Ni₃Nb 高 温稳定性相对较差,650 ℃以上容易转变成正交结构 的δ-Ni₃Nb,形成针状/片状颗粒,大幅降低合金的强 度和塑性^[1]。而 fcc 结构的γ'-Ni₃Al 热稳定性高,因此 航空发动机,尤其是先进军用发动机涡轮盘以及叶片合 金主要以γ'相强化型镍基高温合金为主。粉末高温合金 是制造高性能先进涡轮盘的主要材料,如 FGH95~ FGH98,其γ'相含量高(>40%),第二相颗粒的尺寸 分布、间距、形貌往往是决定服役性能的关键^[5]。

为了平衡合金的高温性能,需要通过特定的热处 理工艺对 y'相进行调控,而且常采用两级甚至是多级 时效,以获得多种尺度的 y'相。Inconel 718、GH4698 等强化相含量相对较低的高温合金,析出相的控制主 要在等温时效阶段完成,时效处理成为调控最终使役 性能的关键。然而,由于粉末高温合金中的 Al+Ti 含 量较高,使得 y'相容易在固溶冷却过程中析出、长大 甚至是粗化,除非在极高的冷却速度下(>10⁴ ℃/min) 才能完全抑制 y'析出^[6]。通过合理的冷速控制,同样 可以在固溶冷却过程中获得多种尺寸分布的 y'相^[7-9]。 而且,对于高 y'相含量的高温合金,y'的尺寸、形貌、 含量以及 y/y'错配度主要取决于冷却速度^[10]。而化学 自由能和界面能是影响 y'相形核和长大的两个主要因 素,也就是说,控制着 y'相析出行为的过饱和度和错 配度容易受冷却速度影响^[11]。

FGH97 合金添加了 0.3%左右 Hf 元素,不仅可以 抑制原始颗粒边界 (PPBs),还使得合金的 y'相析出行 为不同于 FGH95、FGH96 以及 FGH98^[12]。此外, FGH97 合金中的 y'相含量超过 60%,与其它粉末高温 合金相比,其第二相析出对固溶冷却速度更为敏感。 己有研究发现,FGH97 合金在 0.01 ℃/s 缓冷时,二 次 y'相严重粗化,形成 5 µm 左右的枝晶状颗粒,并伴 有三次 y'形成;而在 10 ℃/s 时,则形成 200 nm 左右 的方形颗粒^[13]。然而,对于冷却速度在 FGH97 合金 y' 析出及长大过程中的作用规律和机制,尚未有研究报 道。因此,鉴于 FGH97 合金的特殊性,有必要深入分 析其固溶处理冷却过程中 y'相的析出行为,尤其是冷 却速度对析出相的尺寸、形貌以及力学性能的影响。 本研究为粉末高温合金固溶热处理冷却阶段的冷速控

收稿日期: 2019-06-15

基金项目:中国博士后科学基金(2017M623333XB, 2018M643760);陕西省自然科学基础研究计划(2019JQ-169, 2019JQ-406);陕西省博士后科学基金(2018BSHQYXMZZ38)

作者简介:周 宣,男,1987年生,博士,西北有色金属研究院,陕西 西安 710016,电话: 029-86221498, E-mail: zhouxuanjs001@163.com

稀有金属材料与工程

制提供理论和实验支撑。

1 实 验

Co

Cr

实验采用的材料为镍基粉末高温合金 FGH97,合 金成分见表 1,其 γ '相完全溶解温度在 1180~1190 ℃ 之间^[14]。在 1200 ℃/2 h/140 MPa 条件下经热等静压 (HIP)致密化,随后通过 1200 ℃/2 h/AC(空冷)的 过固溶处理,以完全消除 HIP 缓慢冷却过程中形成的 粗大 γ '相。在固溶处理后的锭中,利用线切割、车床 等加工出 Φ8 mm×12 mm 和 Φ13 mm×70 mm 的试样分 别用于 Gleeble 控制冷却实验、模拟热处理实验和力 学性能测试试验。

在 Gleeble-3800 热模拟试验机上进行控制冷却实验,先将圆柱试样(Φ8 mm×12 mm)加热至 1200 ℃并保温 5 min,尽量使得温度均匀并完全溶解 y'相,再分别以 15、30、45、60、120、240 ℃/min 的速度冷却至 700 ℃(控制冷却工艺如图 1a 所示),随后取出并强制空冷。采用标准单级时效工艺: 870 ℃/32 h/AC,对通过 Gleeble-3800 控制冷却的样品进行时效 热处理。

表 1 实验合金的化学成分 Table 1 Chemical composition of experimental alloy (ω/%)

Ti Nb Hf

Zr

в

Ni

Al

Mo

8.9	15.8	5.7	4.0	5.0	1.8	2.6	0.3	0.014	0.01	Bal.
	Temperature/°C	200 - 100 - 900 - 800 - 700 - 600 -	0 5	10	15	20		40 °C/min 20 °C/min 5 °C/min 5 °C/min 5 °C/min 5 °C/min 0 °C/min	a 40	
			න/		111		0.05		b	
				30	25 ±0.5				M12	
				65	±١					

图 1 实验采用的连续冷却工艺和拉伸试样尺寸图

Fig.1 Cooling profiles used in this work (a) and dimensional drawing used for tensile tests (b)

利用模拟热处理炉对棒状试样(**Φ**13 mm×70 mm) 进行控制冷却处理实验:加热至 1200 ℃后保温 20 min,并分别以 15、30、45、60、120 ℃/min 冷却至 700 ℃,取出后强制空冷。随后进行 870 ℃/32 h/AC 时效处理。将时效后的样品机加成图 1b 所示尺寸,分 别进行室温(RT)和 650 ℃高温拉伸试验。(限于设 备冷却能力,在 900 ℃温度以下时冷却速度为 60~120 ℃/min,并未达到预定的 120 ℃/min。)

采用扫描电子显微镜(SEM)分析 Gleeble-3800 控制冷却获得的实验样品以及对应的时效样品的 γ' 相。SEM 样品经机械抛光后,通过电解抛光的方法获 得:170 mL H₃PO₄+8 g CrO₃+5 mL H₂SO₄溶液,电压 10 V,室温。利用差示扫描量热法(DSC)分析 15、 30、45 ℃/min 冷却速度下的 γ'析出温度和析出温度范 围。由于 γ'形貌以立方体为主,颗粒尺寸受观察方向 影响较大。为了尽量减少观察方向引起的 γ'颗粒尺寸 测量误差,每个冷却速度条件下都选取 10 个不同晶粒 内的 γ'作为统计对象,每个冷却速度至少测量了 995 个 γ'相颗粒(实验主要采用 SEM 分析 γ'相,限于 SEM 分辨率,对于尺寸<10 nm 的析出相不做统计分析)。

2 实验结果

2.1 二次 y'相特征

图 2 为从过固溶温度 1200 ℃分别以 15、30、45、 60、120、240 ℃/min 的冷速冷却至 700 ℃过程中形

Fig.2 Secondary γ' morphologies obtained from different cooling rates: (a) 15 °C/min, (b) 30 °C/min, (c) 45 °C/min, (d) 60 °C/min, (e) 120 °C/min, and (f) 240 °C/min

成的 y'相。图 3 为对应的 870 ℃/32 h/AC 时效热处理 后的 y'相。从图 2 和 3 中可以看出,时效处理对固溶 冷却过程中析出的二次 y'相尺寸和形貌没有明显影 响,而冷却速度却是决定析出相尺寸和形貌的关键因 素。随着冷却速度的增大,析出相由 15 ℃/min 时的 八重立方体变成 240 ℃/min 时的细小方块状。析出相 尺寸随着冷却速度的增大而减小,而析出相密度却随 着冷却速度的增大而增加。

图 4 为固溶冷却过程中不同冷却速度对应的 y'相 尺寸分布。如图 4c 和 4d 所示的第二相分布曲线,在 45 和 60 ℃/min 的中等冷却速度下, y'相尺寸呈现出 双峰分布的特点,而在大于 60 ℃/min 和小于 45 ℃ /min 的冷却速度下则呈现的是单峰分布。此外,随着 冷却速度的增加,析出相尺寸分布范围也随之减小。 图 5 为二次 y'相平均颗粒尺寸随冷却速度变化的曲 线。从中可以看出,时效处理对第二相尺寸几乎没有 影响,也更为清晰地反映了冷却速度对析出相尺寸 的影响程度:从 15 ℃/min 时的 0.38 µm 减小到 240 ℃/min 时的 0.12 µm。y'相平均尺寸 r 与冷却速度 v 存 在下述关系:

r=0.21395log*v*+0.61738 (1) 二者关系与 U720Li 类似^[11],析出相尺寸与冷却速度 的对数成线性关系。

需要注意的是,在较低冷却速度下,许多 γ′相颗 粒粗化并且分裂成八重立方体(尤其是 15 ℃/min,

图 3 标准时效处理后的 y'相

Fig.3 Secondary γ' morphologies after aging at 870 °C/32 h/AC:
(a) 15 °C/min, (b) 30 °C/min, (c) 45 °C/min, (d) 60 °C/min,
(e) 120 °C/min, and (f) 240 °C/min

如图 2a 和图 3a),本研究统计对象为分裂后的单个颗 粒尺寸,因此,在 15 ℃/min 条件下其原始的析出相 尺寸远比统计的 0.38 µm 大得多。此外,二次相统计 标准差也与冷却速度有关:冷却速度越快,标准差越 小。这是由于冷速越低, y'相粗化越严重,使得颗粒 呈立方状,加之较低冷速下的 y'相的逆向粗化,使得 观察方向引起的误差较大。

2.2 抗拉强度

图 6 为 870 ℃/32 h/AC 标准时效处理后,不同冷 速样品对应的室温抗拉强度以及 650 ℃高温抗拉强 度。合金的抗拉强度随着冷却速度的增大,呈现先降 低后升高的趋势。在 45 ℃/min 的冷却速度下,室温 强度降至最低,为 1221.6 MPa; 650 ℃高温强度也降 至最低,为 1106.1 MPa。在 120 ℃/min 的冷却速度下, 室温强度和 650 ℃高温强度分别升高至 1400.9 和 1283 MPa。

FGH97 合金的力学行为显然受析出相尺寸、含量 以及 γ/γ′错配度的多重作用的影响^[15]。与 15 ℃/min 的 冷速相比,以 240 ℃/min 冷却时,可能因其析出相含 量和 γ/γ′错配度相对较低,不利于强度的提高^[15]。但是, 快速冷却形成析出相很小,颗粒强化效果明显。最终, 在析出相尺寸、含量以及错配度的综合作用下,形成图 6 所示的强度随冷却速度增大而先降低后升高的现象。

3 分析与讨论

3.1 冷却速度对 y'相形核的影响

粉末高温合金中的合金元素含量非常高,固溶冷却过程中形成的高过饱和度为 y'相析出和长大提供驱动力。因此,这些第二相在冷却过程中经历多个阶段: 形核、长大甚至是粗化。

经典均匀形核理论认为^[11,16],第二相临界形核尺 寸 *R* 满足:

$$R = \frac{2\sigma V_{\rm m}}{\Delta G_{\rm p}} \tag{2}$$

其中, σ 为单位面积内的界面能; *V*_m为析出相的摩尔体积; Δ*G*_p 为析出相形成的摩尔自由能, 对于 γ'相析出强化型高温合金可以用下式来表示:

 $\Delta G_{p} = \Delta f_{v} - \Delta f_{\delta} \tag{3}$

其中, Δf_v 为驱动 γ/γ' 相转变的化学自由能变化; Δf_{δ} 为单位体积应变能变化。从式(2)和式(3)中可以 看出, γ' 相临界形核尺寸主要取决于过饱和度控制的 相变驱动力 Δf_v 以及与 γ/γ' 错配度 δ 相关的界面能 σ 和 应变能 Δf_{δ} 3个方面。

y'相析出强化型高温合金 U720Li 的研究结果表明,冷却速度越高,过冷度越大,y'相析出温度越低^[11]。

Fig.4 Size distribution of secondary γ' obtained at different cooling rates: (a) 15 °C/min, (b) 30 °C/min, (c) 45 °C/min, (d) 60 °C/min, (e) 120 °C/min, and (f) 240 °C/min

Fig.6 Influence of cooling rates on ultimate tensile strength

本研究的 FGH97 合金也有类似规律,如图 7 所示。在 15 °C/min 的冷却速度下,二次 γ '相在 1190 °C附近开 始析出;而当冷却速度提高至 45 °C/min 时,二次 γ ' 相开始析出温度则降低至 1150 °C左右。所以,冷却 速度越高,第二相析出的过冷度越大,使得 γ 基体过 饱和度越高, γ '相析出的驱动力 Δf_v 也就越大,对应的 临界形核尺寸 R 就越小。

 $y/y'错配度 \delta=2(a_{y'}-a_{y})/(a_{y'}+a_{y})$,其中 a_{y} 和 a_{y} 分别 为 y 和 y'两相的晶格参数。δ 的绝对值体现的是两相间 的晶格参数差异,并且主要取决于两相成分。Singh 等^[5]研究了 René 88DT 合金在 24 °C/min 冷却速度下 的 y'相析出行为,结果表明二次 y'相与三次 y'相析出 机制并不相同:前者析出温度高,接近平衡成分;而 后者由于过冷度大、析出温度低引起的扩散困难而偏 离平衡成分。快速冷却时,析出温度相对较低,Al、 Ti、Nb等 y'相形成元素扩散能力差,析出相成分与平 衡成分相差较大, y/y'界面附近浓度差异小,使得快冷 的错配度 δ 比缓冷的低些。所以,快速冷却可以减小 y/y'界面能 σ 和应变能 Δf_{a} ,降低临界形核尺寸 R。

在等温时效过程中,新相 y'的形核率 *I* 可以表示为^[16,17]:

$$I = A \exp(\frac{-\Delta G_{\rm p}}{kT}) \exp(-\frac{Q}{kT}) \tag{4}$$

其中, *A* 为指数项因子, 是一个与温度和时间无关的 常数; *T* 为温度; *k* 为玻尔兹曼常数; *Q* 为自扩散激活 能。对于连续冷却,随着冷却速度的提升, *y*'形核的 过冷度和 *y* 基体的过饱和度升高, *y*'相形核速率 *I* 快速 增加。所以,高冷却速度下二次 *y*'相的颗粒密度远高 于低冷却速度,如图 2a 和 2f。

在温度略低于 y'相完全溶解温度的冷却初期,由 于二次 y'相形核后 y 基体仍具有一定的过饱和度以及 长程扩散能力,二次 y'相会发生长大甚至是粗化,基 体过饱和度得到降低。随着冷却过程的继续,Al、Ti 等 y'相形成元素的长程扩散能力逐渐下降,远离二次 相的一些区域的过饱和度逐渐升高,甚至会激发二次 形核,形成三次 y'相。如图 7 所示, FGH97 合金在 15~45 ℃/min 的冷速范围内 y′相出现第二次析出的现象,其 析出温度和析出峰强度随着冷却速度的增加而显著降 低,而析出温度范围则随之增大。图 8a 内的球状颗粒 即为与之对应的三次 y′相。在 15 ℃/min 的较低冷速 下,二次 y'相形核时的过饱和度以及过冷度较低,形 成的二次 y'相的形核率 I 相对较低,即使二次相长大 粗化,较大的颗粒间距仍然为三次 y'相析出提供条件。 随着冷速的增加,二次 y'相形核密度升高,颗粒间距 减小,激发三次相形核所需的过饱和度越难以达到。

Fig.7 DSC curves of the sample under different cooling rates

图 8 固溶冷却过程形成的 y'相高倍 SEM 照片

Fig.8 High magnification SEM images of the second γ' at cooling rates of 15 °C/min (a) and 60 °C/min (b)

如图 8b 所示,在 60 °C/min 冷却时,只有二次 γ /相而 没有三次 γ /相。

3.2 冷却速度对 y'相长大及粗化的影响

尽管对于 y'相的长大是界面扩散过程控制还是体 扩散控制存在争议^[18],但是毫无疑问,扩散能力是决 定高温合金中 y'长大速率的关键因素。因此,快速冷 却除了引起 y'相析出温度降低,以及影响临界形核尺 寸、形核率外,还会减小析出相尺寸,如图 2 和 3。 由于快冷时析出相析出温度相对较低,使得 y'相形成 元素的扩散系数也相对较低,y'相生长速率因而小于 缓慢冷却的情况。加之,缓慢冷却时二次 y'相的临界 形核尺寸也大于快速冷却。因此,即使缓慢冷却会出现图 2a 和 3a 所示的二次 y'相分裂的现象,还是会在此条件下形成相对尺寸较大的二次 y'相。

根据居里-吴里佛理论, fcc 结构的 y'相容易在 <110>方向择优生长。FGH97 合金中的合金元素含量 很高,即使在 240 ℃/min 的冷速下, y'相也会长大成 图 2f 和 3f 所示的近似方形颗粒;而在 15 ℃/min 的冷 速下, y'相甚至会发展成尖瓣状或枝晶状, 如图 2a 和 3a 所示^[19]。在析出相长大过程中, y/y/错配度逐渐增 加,在弹性交互作用能和 y/y'界面能共同作用下^[20], 方形 y'相颗粒的{100}面上中间处的弹性应变最大,容 易成为析出相形貌不稳定而分裂的起始位置,最终分 解成图2a所示的八重立方体。三次 y'相偏离平衡成分, 析出温度较低,其与基体间的错配度较小,因而形貌 容易保留尺寸<10 nm 的球状颗粒^[5],如图 8a 所示。 FGH97 合金的错配度约为-0.078%, 其绝对值远大于 René 88DT、René 104、IN 100 等合金^[13,21,22], 意味着 FGH97 合金的 y/y'界面能以及应变能相对较高, 析出相 稳定性因而也低于后者。为了提高析出相稳定性,更 为先进的第3代粉末高温合金采取了降低 y/y'错配度 以及 y'相含量的设计思路,以提高组织的长期稳定性。

从FGH97合金在15~240 ℃/min范围内的控制冷 却速度实验结果来看,固溶冷却速度是控制 FGH97 合金二次 y'相析出的关键,时效热处理对二次 y'相的 形貌和尺寸影响较小。

4 结 论

 二次 y'相析出行为主要受固溶冷却速度控制, 而时效热处理对析出相的尺寸和形貌几乎没有影响。

2) 固溶冷却速度越快,形成的过饱和度越大,二次 γ′临界形核尺寸越小、形核率越高,其析出温度则 越低。在 15℃/min 相对缓慢冷却的条件下,二次 γ′ 相长大并分裂成八重立方体,形成 0.38 µm 左右的方 形颗粒;而在 240 ℃/min 相对快速的冷却条件下,主 要形成 0.12 µm 左右的近似方形的二次 γ′相。

3) 以 15 ℃/min 冷却时,二次 y'相之间会析出大量的三次 y'相;当冷却速度升高至 60 ℃/min 时,三次 y'相析出则被完全抑制。

4) 合金抗拉强度随着冷却速度的增大先降低后 升高,在 120 ℃/min 冷速下,其室温强度和 650 ℃ 高温强度分别达到 1400.9 和 1283.0 MPa。

参考文献 References

 Mignanelli P M, Jones N G, Pickering E J et al. Scripta Materialia[J], 2017, 136: 136

- [2] Souaï N, Bozzolo N, NazéL et al. Scripta Materialia[J], 2010, 62(11): 851
- [3] McCarley J, Alabbad B, Tin S. Metallurgical and Materials Transactions A[J], 2018, 49(5): 1615
- [4] Singh A R P, Nag S, Hwang J Y et al. Materials Characterization[J], 2011, 62(9): 878
- [5] Singh A R P, Nag S, Chattopadhyay S et al. Acta Materialia[J], 2013, 61(1): 280
- [6] Kusabiraki K, Zhang X, Ooka T. ISIJ International[J], 1995, 35(9): 1115
- [7] Sarosi P M, Wang B, Simmons J P et al. Scripta Materialia[J], 2007, 57(8): 767
- [8] Radis R, Schaffer M, Albu M et al. Acta Materialia[J], 2009, 57(19): 5739
- [9] Wu Kai(吴 凯), Liu Guoquan(刘国权), Hu Bengfu(胡本芙) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2012, 41(7): 1267
- [10] Mitchell R J, Preuss M, Hardy M C et al. Materials Science and Engineering A[J], 2006, 423(1): 282
- [11] Mao J, Chang K M, Yang W et al. Metallurgical and Materials Transaction A[J], 2001, 32(10): 2441
- [12] Huang Yunhong(黄运红), Zhang Yiwen(张义文), Wang Fuming(王福明) et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2012, 33(6): 35
- [13] Zhang Yiwen(张义文). Effects of Microelement Hf on the Powder Metallurgy Superalloy(微量元素 Hf 在粉末高温合 金中的作用)[M]. Beijing: Metallurgical Industry Press, 2014: 69
- [14] Radavich J, Furrer D. Superalloys 2004[C]. Warrendale: TMS, 2004: 381
- [15] Zhang P, Yuan Y, Gu Y F et al. Materials Characterization[J], 2018, 142: 101
- [16] Wendt H, Haasen P. Acta Metallurgica[J], 1983, 31(10): 1649
- [17] Babu S S, Miller M K, Vitek J M et al. Acta Materialia[J], 2001, 49(20): 4149
- [18] Tiley J, Viswanathan G B, Srinivasan R *et al. Acta Materialia*[J], 2009, 57(8): 2538
- [19] Fan X, Guo Z, Wang X et al. Materials Characterization[J], 2018, 139: 382
- [20] Doi M, Miyazaki T, Wakatsuki T. Materials Science and Engineering A[J], 1985, 74(2): 139
- [21] Hwang J Y, Banerjee R, Tiley J et al. Metallurgical and Materials Transactions A[J], 2009, 40(1): 24
- [22] Olson G B, Jou H, Jung J et al. Superalloys 2008[C]. Warrendale: TMS, 2008: 923

Precipitation Behavior of γ' in Superalloy FGH97 During Continuous Cooling from Supersolvus Temperature

Zhou Xuan¹, Li Yuli¹, Ma Tengfei¹, Zhang Yusheng¹, Lai Yunjin², Wang Kaixuan³, Liu Xianghong³, Zhang Pingxiang¹

(1. Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China)

(2. Sino-Euro Materials Technologies of Xi'an Co., Ltd, Xi'an 710018, China)

(3. Western Superconducting Technologies Co., Ltd, Xi'an 710018, China)

Abstract: The γ' precipitation behavior in superalloy FGH97 during continuous cooling from supersolvus temperature was investigated by Gleeble-3800 and heat treatment simulator furnace at cooling rates of 15~240 °C/min. The influence of cooling rates on γ' size, particle morphology and tensile strength of the alloy was analyzed. The results show that during cooling from supersolvus temperature. Results show that γ' nucleation and growth, even coarsening, simultaneously occur in the process of cooling. However, ageing treatment seems to exert little influence on γ' evolution. At the cooling rate of 15 °C/min, a large number of secondary γ' split and form square particles with ~0.38 µm in size. Meanwhile, there are lots of small tertiary spherical γ' around secondary γ' . As the cooling rate increases to 60 °C/min, the size of secondary γ' decreases to ~0.22 µm and the precipitation of tertiary γ' is completely inhibited. The tensile strength of the FGH97 alloy tends to increase after an initial decrease with increasing of cooling rates, due to the combined influence of γ' volume fraction, particle size and γ/γ' mismatch.

Key words: Ni-base superalloy; cooling rate; γ' ; precipitation behavior

Corresponding author: Li Yuli, Ph. D., Advanced Materials Research Center, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, P. R. China, Tel: 0086-29-86221498, E-mail: 155035111186@163.com