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Abstract: A two-mode phase field crystal (PFC) method was employed to focus on hexagonal to square phase transformation. 

Hexagonal phase with a misorientation of 6° and a tilt angle of 0°, 15°, 30°, and 45° were investigated. Results show that the 

hexagonal grains grow up, coalesce and form coherent grain boundaries with dislocation sets in two orientations. Square phases 

nucleate on these dislocation sets and their orientations are determined by dislocation sets. These square grains have two variants at 

each tilt angle, and the misorientations are 30°, 30°, 10°, and 5° when tilt angles are 0°, 15°, 30°, and 45°, respectively. Square grains 

with different orientations grow and ripen in different paces, and the grains located in preferential orientation will dominate. 

Dislocation sets are generated to relieve strain concentration that rises from grain growth in coherent boundaries. 
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The diffusive phase transformation process consists of grain 

nucleation, growth and ripening as well as dislocation 

formation and annihilation. Such a process is decisive to 

mechanical and electronic properties. Phase field crystal (PFC) 

model is good at simulating such a process as it can catch the 

transient state and handle with dislocation networks on 

atomistic scale. The fcc, bcc, and hcp structures have the same 

hexagonal stacking on their close packing planes (111), (110) 

and (0001), and we name the hexagonal stacking in two- 

dimension as hexagon phases. The (001) and (110) planes for 

fcc, (001) plane for bcc and hcp cylindrical plane have similar 

square stacking, and we name the square stacking as square 

phases. From this perspective, the PFC simulation of 

hexagonal to square phase transformation is meaningful as 

many materials actually exhibit this transformation, such as 

bcc→fcc→bcc transformation of iron, bcc→hcp transfor- 

mation of titanium, and hcp→fcc transformation of zirconium. 

PFC model works on atomistic scales and diffusive time 

scales. It is superior in describing dislocation dynamic, grain 

boundary dynamic, and stress induced microstructure evolu- 

tion

[1-6]

. Based on the PFC framework, modified versions are 

developed for phase transformation. PFC model is used to 

simulate stripe phase and triangular phase, but its single mode 

approximation restricts the complexity of structural transfor- 

mation

[7-9]

. Wu et al

[10-12]

 investigated the possibility to control 

the crystal symmetry within PFC and developed two-mode 

PFC models and they found a state of square symmetry as 

well as the coexistence between square phases and liquid, 

square phases and hexagon phases. Greenwood et al

[13]

 used a 

systematic construction of two-particle correlation function 

that allows a broad class of structural transformation to study 

pure metal transformation. They further provided a detailed 

prescription for controlling crystal structure and introduced 

parameters for changing temperature and surface energy, so 

that phase transformation between bcc, fcc, hcp, and simple 

cubic (SC) lattices can be studied. It has been applied to 
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structural transformation for binary alloy

[14,15]

. Ofori-Opoku et 

al

[16]

 extended two-point correlation kernel to ternary alloy to 

illustrate complex microstructure evolution in dendritic and 

eutectic solidification and solid-state precipitation. The above 

works done concerning structural transformation are 

inspirational for our study. 

Grain growth and dislocation dynamic of phase transfor- 

mation are issues yet to be clarified. Wu et al

[10-12]

 studied 

grain growth using PFC, and they revealed growth 

mechanisms of grains with different misorientations, i.e., grain 

area reduction, grain rotation, and repeated faceting- 

defecating transition. Fallah et al

[17,18]

 paid their attention on 

early stage clustering of dilute binary alloy, and found that 

subcritical cluster is triggered by the stress relaxation effect of 

quenched-in defects, such as dislocations, and subcritical 

clusters become overcritical due to reduction of high strain 

areas in the lattice. Their theoretical prediction is verified on 

Al-Cu real alloy with Mg addition. 

Previous works provide us a good knowledge about PFC 

modeling on periodical lattice structure and defects. In this 

study, two-mode PFC was applied to study defects, 

morphology, and boundary migration involved in phase 

transformation. The PFC calculation was performed on a 

512×512 matrix to obtain the density waves of each step. 

Graphical representation of density waves witnesses diffusive 

process from hexagonal phases to square phases, including 

grain nucleation, growth, ripening, and coalesce, also 

dislocations and atomic arrangement of grain boundary. 

1  Equation of Motion 

1.1  Free energy 

Free energy of materials for PFC method is represented by a 

function of density waves, like crystal density field

[1,19]

, which 

can quantitatively reproduce the accuracy of real materials. 

The simplest PFC model

 

has the same free-energy function as 

the Swift-Hohenberg model of pattern formation

[7,20,21]

, that is, 

the “one-mode” PFC model, the dimensionless form of which 

is given by

[7,21]
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where f is the density of free energy, ψ represents crystal 

density field, ∇ is the Laplace operation. 

For a “two-mode” PFC model, the Helmholtz free energy is 

given by

[7,21]
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where r is dimensionless degree of undercooling; Q

1

=q

1

/q

0

 is 

the ratio of two wave vector magnitudes q

0

 and q

1

 that are 

used to describe two sets of density waves; R

1

 is a parameter 

that controls the model stability. Contrasting Eq.(1) and Eq.(3), 

increasing R

1

 reduces the contribution of the second mode, 

and it reduces to the one-mode model when R

1

>>1. Inversely, 

take the extreme case as R

1

=0, one gets the two-mode model. 

We used the two-mode free energy in this research. 

1.2  Phase diagram and parameters selection 

We constructed a phase diagram for liquid, square phase 

and hexagonal phase using classical common tangent law of 

free energy density.  

The density of liquid φ

1

 is a constant, which is written as: 

φ

1

=φ

0

                                         (5) 

where φ

0

 is the average atom density. 

A periodical density φ to line with crystal period was 

employed for solid. For square phase φ

s

: 
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For hexagonal phase φ
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Introduce Eq.(5~7) to free energy density of “f” in Eq.(3), 

one obtains the free energy density, i.e., f

l

, f

s

, and f

h

 for liquid, 

square and hexagonal phases, respectively. 

Solve equation set of partial derivatives about A

s

, B

s

, q

s

, and 

q

h

 to get the expressions, and take these expressions to 

Eq.(7~9), one gets the minimum free energy of liquid, square 

phase and hexagonal phase, f

1

(φ

0

), f

s

(φ

0

), and f

h

(φ

0

), 

respectively. 

The common tangent construction was used to calculate the 

three phase diagram. In coexistence region, the chemical 

potentials (f

i

′=f

j

′=µ) and grand potentials (f

i

µφ

i

=f

j

µφ

j

) of 

two phases are equal

[8]
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where i, j represents two coexistence phases.  

By taking different r values between 0 and 0.6, one obtains 

density field ρ

0

 on phase boundary of liquid, square and 

hexagonal phase, as demonstrated in Fig.1

[22]

, and the 

parameters are chosen accordingly.

 

1.3  Diffusion equation and numerical solution 

Equation of motion of PFC model has the standard 

Cahn-Hilliard form for conserved dynamics: 

2

ψ F

t ψ

∂ ∂

= ∇

∂ ∂

                                  (10) 

where ψ represents crystal density field, t is the time variable, 

∇ is the Laplace operation and ∇

2

 operator ensures that the 

crystal density field is conserved.  
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Fig.1  Two-dimensional phase diagram calculated in a two-mode 

PFC model (shadow represents the two-phase coexistence 

region) 

 

1.4  Applied stress and deformation 

The “deformation” abides isovolumetric hypothesis, in 

which the area fulfills the following conditions:  

S=∆x∆y=∆x′∆y′                                (11) 

where ∆x and ∆y are the starting space steps, ∆x′ and ∆y′ are 

space steps after deformation (as shown in Fig.2).  

The space step variable d fulfills d= ε

�

∆x∆t along x direction, 

where ε

�

 is a dimensionless strain rate, ε

�

=6.5×10

-6

/∆t in this 

study. The space step is written as follows, and n is the time 

step: 

x′=∆x+nε

�

∆x∆t                                 (12) 

y′=

1

x y y

x' nε t

∆ ∆ ∆

=

∆ + ∆

�

                            (13) 

2  Results and Discussion 

The PFC calculation is performed on a 512∆x×512∆y 

matrix with periodical boundary condition applied to 

Cartesian coordination. Three hexagonal seeds are pre-placed 

on the matrix, which locate at 0<y<L

y

/4, L

y

/4<y<3L

y

/4, and 

3L

y

/4<y<L

y

. Each of them tilts 3°, so the misorientation of 

two adjacent seeds is 6°. The time step is t=0.5 while space 

step is ∆x=∆y=π/4. The whole process comprises two steps, 

i.e., a preliminary solidification at higher temperature and a 

subsequent phase transformation at lower temperature. The 

first step is a relaxation process as the hexagonal phases grow 

up by depleting liquid phase. The second step is a deformation 

and phase transformation process as stress is applied. Applied 

stress and reduced temperature will trigger hexagonal to 

square phase transformation. Totally four such species having 

0°, 15°, 30°, and 45° tilt angles (denoted as δ) are checked. 

Fig.3 presents the GB-θ-δ (grain boundary, GB) relation and 

the morphologies for the first step and second step.  

When the hexagonal phases are stable for the first step, 

applied stress is introduced and the temperature decreases to 

the square phase region for the second step. Square phases 

nucleate on dislocations at the beginning and grow up by 

depleting hexagonal phase. Square grains SI and SII (Fig.4c) 

are distinguished by their orientation, and they align 

alternatively along hexagonal grain boundary. The included 

angle between [01] axis of SI and x axis is 105° and that for 

SII is 75°. SI grains grow rapidly along their [01] and [10] 

directions. SII grains align between SI gaps. They both grow 

separately. Growth of SII grains is somewhat suppressed by SI 

grains when they meet at the top boundary. At the bottom 

 

 

 

 

 

 

 

 

Fig.2  Schematic representation of isovolumetric deformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3  Schematic representation of GB-θ-δ relation (a), misorientation for a symmetrical boundary during higher temperature relaxation with 

θ=6°and δ=0° (b), and phase transition during low temperature deformation (square phases nucleate on dislocation) (c)
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Fig.4  Hexagonal phase to square phase transformation for symmetrical grain boundary with θ=6° and δ=0°: (a) 30 and (b) 30 000 time steps for 

hexagonal growth; (c) 750, (d) 1020, (e) 1170, (f) 1440, (g) 1650, (h) 1980, and (i) 2430 time steps for square grains growth 

 

boundary, growth of SI grains is suppressed by SII grains. The 

equilibrium morphology is predominated by SI grains with a 

small fraction of SII grains on the top half, but SII grains 

dominate with a small fraction of SI grains on the bottom half, 

as shown in Fig.4c~4i. 

Square phases nucleate on dislocation, grow up by depleting 

hexagonal phase, ripen by incorporating square phases with the 

same orientation, and coalesce square phases with different 

orientations. According to the classic “nucleation→growth→ 

ripening→coalesce” processes, the phase transformation can 

be concluded as the following three paths: first, hexagonal 

phases→square phases (SI or SII); second, hexagonal 

phases→square phases SI→square phases SII; third, 

hexagonal phases→square phases SII→square phases SI. It is 

noticed that the two variants of square phase, SI and SII, 

inhomogeneously nucleate on two different dislocation sets, 

grow separately, and ripen via the second path on top and the 

third path at bottom. 

For the H1/H2 grain boundary locates on the top half, 

growth of SII grains along [01] axis is completely suppressed, 

and some of them coalesce with grain SI via the second path, 

as demonstrated in Fig.4f. With prolonging the time, H1/H2 

boundary transforms into SI/ SII, SI/H, SII/H boundary type. 

The blue, green, and yellow dots in Fig.4f represent the 

constituent atoms in SI, SII and H grain, respectively. Some of 

these atoms on SI/SII boundary are pertained by SI or SII grain 

exclusively, some of these atoms are pertained to the both, and 

such semi-consecutive feature agrees with semi-coherent grain 
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boundary. Because of large size difference and dissimilar crystal 

structures between square phases and hexagonal phases, atoms 

on SI/H or SII/H align disorderly and non-consecutively, so the 

two are entitled as incoherent boundary. For H2/H3 boundary, 

the phase transformation process is basically the same with that 

of H1/H2. Square phases nucleate on two different dislocation 

sets, and form two variants: one points to 105° direction and the 

other points to 75°. SII grains are on prevail while SI grains are 

suppressed. Final misorientation of SI and SII is 30° with 

semi-coherent boundary. 

The tilt angle is enhanced to 15°, and the diffusive process of 

phase transformation is shown in Fig.5. Dislocation sets are 

generated when two adjacent hexagonal phases coalesce. Each 

one comprises two edge dislocations with a 60° included angle, 

and all line on hexagonal subgrain boundary regularly. 

Analogously, these dislocation sets have two orientations, which 

will determine the square phases to nucleate on them. Atoms on 

hexagonal subgrain boundary are ordered, consecutive, and 

coherently bonded, which agree with the features of coherent 

boundary. Square phases nucleate on dislocation sets and form 

two square variants, SI and SII, of which the former points to 

60° and the later points to 30°. Partial enlarged details of SI/H 

and SII/H are given by Fig.5c. The hetero- phase boundaries 

of square phases and hexagonal phases are disordered, 

non-consecutive, and ill-bonded, thus titled as incoherent 

boundary. These high-angle hetero grain boundaries are in 

irregular zigzag-like shape but become smooth gradually, as 

show in Fig.5e and 5f. Some of these atoms on SI/SII boundary 

are pertained to SI or SII exclusively, and some are pertained to 

the both, featured as semi-coherent boundary. 

With further enhancement of the tilt angle to 30°, the 

morphology evolution is demonstrated in Fig.6. H1/H2 and 

H2/H3 grain boundaries are coherent and there are dislocation 

sets in 60° included angle. Square phases nucleate on 

dislocation sets, and these square phases have very small 

misorientation. Square phases ripen and coalesce with distorted 

lattice nearby the junction, so the whole grains are in a strained 

state. Square phases grow up along their [01] direction with 

slightly adjusting their orientation, and such adjustment causes 

the final square phases to grow in two directions, i.e., SI grain 

points to 40° direction and the SII grain points to 50° direction 

(Fig.5f). Atoms on SI/SII grain boundaries line orderly and 

consecutively, and dislocation sets and single dislocation are 

inevitably generated to relieve the coherent strain. 

Calculation for 45° tilt angle is carried out, and the micro- 

structures are depicted in Fig.7. The starting hexagonal grain 

boundaries consist of dislocation sets. Square phases nucleate 

on dislocation sets, and one points to 65° and the other points 

to 90°. SI and SII grains grow up and ripen competitively, and 

SI grains dominate eventually by depleting SII grains. During 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5  Hexagonal phase to square phase transformation for symmetrical grain boundary with θ=6° and δ=15°: (a) 30 000 time steps for 

hexagonal grain growth; (b) 990, (c) 1500, (d) 2400, (e) 3300, and (f) 30 000 time steps for square grain growth 
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Fig.6  Hexagonal phase to square phase transformation for symmetrical grain boundary with θ=6° and δ=30°: (a) 30 000 time steps for 

hexagonal grain growth; (b) 750, (c) 1140, (d) 1500, (e) 2010, and (f) 4050 time steps for square grain growth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  Hexagonal phase to square phase transformation for symmetrical grain boundary with θ=6° and δ=45°: (a) 30 000 time steps for 

hexagonal grain growth; (b) 900, (c)1500, (d) 3000, (e) 10 500, and (f) 24 000 time steps for square grain growth 
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ripening and coalesce process, some SI grains adjust their 

orientation to reduce system energy; we name this kind of 

grain as SIII. The final microstructures consist of SI and SIII 

grains with a misorientation of 5°, as shown in Fig.7f. SI/SIII 

grain boundaries are ordered, consecutive, and belong to 

coherent boundary. 

Fig.8 provides a comparison of bicrystal and tricrystal grain 

boundaries for H/H and S/H with various δ, and the 

corresponding data is summarized in Table 1. Let’s start with 

hexagonal subgrain boundary. Hexagonal phases nucleate at 

the beginning with a misorientation of 6°, then grow up, ripen 

and coalesce, and develop into coherent subgrain boundary 

aligned with regularly spaced dislocation sets. A perfect 

hexagon structure is characterized by six-membered ring with 

one in the center (red dot line in Fig.8a). Dislocation sets are 

characterized by five-membered ring due to missed atom at 

the end of dislocation (green dot line in Fig.8a). For each tilt 

angle case connecting these rings into hexagon and pentagon, 

the orientation of grain and dislocation can be distinguished, 

which indicates obvious grain rotation with varied tilt angle. 

Besides that, grain rotation in a constant tilt angle is also 

observed as the hexagonal phase adjusts its orientation to fit 

each other better. Misorientation causes strain growth, and 

strain concentration accumulated in grain growth is relieved 

by dislocation or grain rotation.  

 Square phases and hexagonal phases differ in crystal struc- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8  Hexagonal/hexagonal grain boundary (H/H) and the five-atom-cycle as a result of vacancy on dislocation end (a); square/hexagonal 

bi-/tri-grain boundary (S/H) and square/square (S/S) grain boundary (b) 

 

Table 1  Boundary type and misorientation of square phases with θ=6° and tilt angles δ=0°, 15, 30°, 45° 

δ/(°) H/H SI/H&SII/H SI/SII SI/(°) SII/(°) Misorientation/(°) 

0 C I S 105 75 30 

15 C I S 60 90 30 

30 C I C 50 40 10 

S* Start: 65* 90* 25* 

45 C I 

C* Final: 28* 33* 5* 

Note: * indicates that the orientation of square phases changes with time; H is hexagonal phase; SI and SII represents square 

grains in two different orientations; H/H, SI/H, SII/H, and SI/SII represent the grain boundaries of two grains; C: short for co- 

herent; I: short for incoherent; S: short for semi-coherent 
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ture and lattice parameter, so it is easy to understand that S/H 

grain boundaries are incoherent. Such a boundary is 

characterized by random arranged atoms and large surface 

areas. S/H boundaries are formed when square phases nucleate 

on dislocation sets during hexagonal phase to square phase 

transformation. The incoherent S/H hetero-boundaries 

themselves bring little strain, but semi-coherent or coherent 

S/S homo-boundaries will introduce strain during ripening and 

coalescing. The strain concentration can be relieved by either 

surface or dislocation, and for the S/H boundaries, strain 

concentration is relieved by surface. 

Square phases nucleate on dislocation sets, and their 

orientation is determined by dislocation sets. Two kinds of 

square grains generally align alternatively along hexagonal 

subgrain boundaries. For tilt angles of 0° and 15°, square phases 

nucleate with a misorientation of 30° from the beginning, and 

such high-angle semi-coherent grain boundaries assure that 

stress can be released thoroughly and timely by surface, so 

square phases grow up without rotation to adapt to each other. 

For tilt angle of 30°, the square phases grown in a certain 

misorientation can make sure a perfect coherent bonding of 

the two square variants but lead to severe stress concentration 

during coalescing. Therefore, square phases rotate to adapt to 

each other, resulting in a final misorientation of 10°. For tilt 

angle of 45°, though there is a large misorientation from the 

beginning, one grain dominates, ripens and coalesces the other 

thoroughly. This process causes very small strain concen- 

tration on grain edge, leading to a small misorientation (5°) 

for the final square phases. Certainly, strain is also relieved by 

generating sparse dislocation lastly. 

3  Conclusions 

1) If tilt angel δ equals 0°, hexagonal grains grow from 

liquid in a symmetrical way. These grain boundaries bond 

consecutively, with two types of dislocation sets aligning a 

constant interval. When the tilt angel δ is enhanced to 15°, 30°, 

and 45°, these grain boundaries are asymmetrical, but still 

coherently bonded and distributed with two types of 

dislocation sets. Hexagonal grain rotation is observed, and it is 

generally a way to release the strain concentration arising 

from lattice mismatch because of misorientation. Besides that, 

another effective way is generation of dislocations. 

2) Square phases nucleate on dislocation sets and grow into 

directions determined by dislocations sets, thereby forming 

two variants. Competitive growth of two variants is restrained 

by each other, leading to unbalanced fraction in the final 

morphology. Square phases in two directions coexist with 

misorientations of 30°, 30°, 10°, 5° for tilt angles δ of 0°, 15°, 

30°, 45°, respectively. Dislocation sets also exist on square 

grain boundary when angles are 30° and 45°. 

3) Hexagonal grain boundaries are coherent because of 

perfect lattice matching, and dislocation sets are generated on 

the boundaries to release coherent strain. Hexagonal/square 

grain boundaries are incoherent because of large lattice 

mismatch. Square/square grain boundaries are coherent under 

low misorientation conditions and semi-coherent under high 

misorientation conditions. 
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