
Rare Metal Materials and Engineering
Volume 53, Issue 7, July 2024
Available online at www.rmme.ac.cn

Cite this article as: Zheng Deyu, Xia Yufeng, Teng Haihao, et al. Multi-object Optimization of Forging 

Process Parameters for Super Large Turbine Disc Based on Taguchi Method[J]. Rare Metal Materials and 

Engineering, 2024, 53(07): 1887-1896. DOI: 10.12442/j.issn.1002-185X.20230637.

Multi-object Optimization of Forging Process Parameters Multi-object Optimization of Forging Process Parameters 
for Super Large Turbine Disc Based on Taguchi Methodfor Super Large Turbine Disc Based on Taguchi Method
Zheng Deyu,    Xia Yufeng,    Teng Haihao,    Yang Wenbin,    Yu Yingyan

College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

Abstract: The forging load of super large turbine disc with a diameter over 2 m may approach or even surpass the limit of 800 MN of 

the largest press machine in China, which is the extreme manufacturing. Thus, maintaining good mechanical properties and 

controlling forging load are two key factors during the forging process of super large turbine disc. 25 groups of forging parameters 

was designed based on Taguchi method. The multi-objective optimization of finite element method simulation results was conducted 

by SNR and ANOVA methods. Results show that the most uniform and refined recrystallization microstructures are obtained under 

optimal forging load. The optimal combination of process parameters is determined under extreme manufacturing condition: 

temperature=1120 °C, strain rate=0.06 s-1, pre-forging size=985/610/475 mm, and die temperature=280 °C. The order of importance 

of each parameter to the simulation results is as follows: temperature>strain rate>billet shape>>die temperature. The experimental 

results obtained under the optimal parameters combination show good agreement with the simulated results, which demonstrates that 

this approach may be used to manage the load and microstructure of super large forgings while avoiding a significant number of 

experiments and numerical simulations.
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As one of the largest deformed superalloy disk forgings in 
the world today, the super large turbine disk forging is an 
essential part of the class F heavy gas turbine, whose size and 
structure bring significant technical challenges to the melting, 
casting, cogging, and hot forging processes. Turbine disk 
forging has become a real extreme manufacturing from the 
perspective of equipment capabilities globally when the 
diameter exceeds 2000 mm[1]. The microstructure and 
properties of turbine disk forgings exhibit a declining trend as 
the disk size increases against the background of the upper 
limit of equipment capacity, and get even worse when 
approaching the upper limit of equipment load. Therefore, a 
challenge that needs to be tackled is the multi-object 
optimization of process parameters that takes into account the 
equipment capacity, the product microstructure, and the 
manufacturing cost[2].

The traditional method of “trial and error” experiments to 
obtain better product properties is expensive and time-

consuming, especially for the large forgings made of 
expensive nickel based superalloy[3], and this cost is 
unacceptable. The optimal parameter combination cannot be 
identified by this method since the combinations of 
parameters cannot be fully applied in the actual manufacturing 
operation. Therefore, it is necessary to find a theoretical 
technique that can directly promote the optimal parameter 
combination selection. As many researches have been 
conducted, the combination of finite element model (FEM) 
and optimization technology can be used to optimize process 
parameters[4]. FEM simulation can predict the results, 
including forging pressure and microstructure, and 
optimization technology can compare the simulation results 
quantitatively under different conditions. In this way, the 
efficient control of process parameters is realized, and the best 
configuration within the range of variable parameters is 
obtained. The application of the theoretical method in the 
actual manufacturing has greatly saved the cost compared 
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with experimental method[5].
Recently, the most widely used multi-objective 

optimization techniques for process parameters are: FEM 
combined with Taguchi optimization method[6–8], processing 
maps optimization method[9–10], Kriging optimization 
method[11], genetic algorithm optimization[12], particle swarm 
optimization optimization[13], etc. There are relatively few 
studies on the optimization of the forging process parameters 
of the turbine disk, and the studies on the optimization of the 
extreme manufacturing parameters of the super large turbine 
disk are rarely stated. Gao[14] created a sensitivity analysis 
approach for flow behavior, temperature, and microstructure 
optimization throughout the forging process. This approach 
can achieve more consistent and finer grain size, reduced 
flash, and full cavity filling. Stanojevic[15] studied the 
connection between abnormal grain growth and post-dynamic 
recrystallization of turbine disk. Laser ultrasonic testing, 
metallographic analysis, and other methods were used to 
illustrate the process of grain coarsening caused by post-
dynamic recrystallization. To examine the effect of solution 
annealing parameters on grain coarsening, the post-dynamic 
recrystallization rate parameter was introduced.

The expense of conducting production tests in extreme 
conditions is significantly higher than in regular conditions. 
Therefore, in order to balance and to control the load, mass, 
and microstructure of super large forgings under extreme 
manufacturing conditions, it is especially important to find an 
effective process optimization technique. The maximum cost 
savings can only be achieved through theoretical optimization 
in advance. Unfortunately, the application of the proposed 
multi-object optimization methods in extreme manufacturing 
conditions has seldom been reported. This study provided a 
reliable optimization method for multiple process parameters 
design to achieve the optimal parameters combination under 
harsh limit conditions of extreme manufacturing. FEM 
simulations were used to provide simulation data, including 
load, microstructure, disk diameter, and parameter distribution 
field, based on the Taguchi method for orthogonal 
experimental design. The signal to noise ratio (SNR) 
evaluation method was used to discover the optimal design, 
and analysis of variance (ANOVA) method was used to find 
the contribution ratios. The ideal configuration objects were 
achieved when objective function was driven by the maxima 
of diameter, the minima forging load (F), average grain size 
(AVG), and standard deviation (SD) of grain size distribution. 
The proposed approach can be used in the design of second 
heat billet for super large turbine disk.

11  Method  Method

The basic method and procedure for the multi-object 
optimization of super large turbine disk forging are shown in 
Fig.1. First, the object function for evaluating microstructure 
uniformity and refinement is defined[6–7]. Second, the 
acceptable range of process parameters variables is selected. 
The optimal range of each parameter variable in extreme 
manufacturing condition is smaller, and the coupling effect of 

multiple process parameters needs to be investigated. The best 
fluctuation range for each parameter was established based on 
the researches of previous studies[16], after which the factor 
level and orthogonal test design were constructed. Third, the 
multiple orthogonal test models of two-dimensional turbine 
disc are imported into FEM. At the same time, the constitutive 
equation and microstructure model are implemented into the 
finite element code[16], and the boundary and load conditions 
are defined. Finite element simulations run in sequence 
according to the arrangement order of orthogonal array. 
Fourth, the simulation results are analyzed to investigate the 
influence of parameter field distribution, and then the results 
are transformed into SNR to determine the optimal parameter 
combination. To determine how each parameter affects the 
outcomes, ANOVA is carried out. In order to verify the chosen 
parameters combination, confirmation experiments are lastly 
carried out.

22  FEM Simulations of Super Large Turbine Disk  FEM Simulations of Super Large Turbine Disk

2.1  FEM modeling 

2.1.1　Detail settings
The billet is made of GH4706 superalloy. The initial 

microstructure, whose initial AVG is about 66 μm, is shown in 
Fig.2. In this study, the FEM model of the super large turbine 
disk is created by DEFORM-2D software using the reverse 
process parameter design of the two heats process. As shown 
in Fig. 3, the upper part shows the 3D model of the turbine 

Fig.1　Schematic of process parameters optimization for large 

forgings

Fig.2　Initial microstructure of GH4706 superalloy

1888



Zheng Deyu et al. / Rare Metal Materials and Engineering, 2024, 53(7):1887-1896

disk for two heats (Fig.3a), while the lower part shows the 2D 
model of the secondary heat and its section size variables 
(Fig. 3b). The process conditions in FEM simulation are as 
follows. (1) The elastic deformation can be ignored due to   
the high temperature and large deformation in the process. 
The billet is set to plastic, and two dies are set to rigid. (2) The 
friction between billet and dies are set to shear type.             
(3) Ambient temperature is set to 20 °C. (4) The initial section 
of the billet contains about 5000 elements, and the automatic 
meshing technique is adopted. (5) The constitutive model and 
microstructure model of GH4706 superalloy are implanted[16], 
with 66 μm in initial AVG from experimental measurement, 
and the grains are uniformly distributed in the billet. (6) The 
equilibrium equation, geometric equation, volume invariance, 
and Mises yield criterion are satisfied. (7) Heat transfer and 
microstructural evolution are taken into account in the process 
of forging simulation.
2.1.2　Mesh independence verification

The numbers of mesh in FEM simulation will affect the 
simulation results sometimes. In order to avoid this situation, 
it is necessary to compare and to verify the output results 
under different mesh numbers conditions, which is called 
mesh independence verification[17]. The numbers of mesh in 
this study are chosen as 1000, 3000, 5000, 7000, and 9000 for 
independence verification, as shown in Fig. 4. It can be seen 
that the selection of the mesh number has negligible influence 
on the output results, which means that there is good mesh 

independence.
2.2  Object functions definition 

The stability of the equipment during the loading process 
can be greatly improved by keeping the maximum forging 
force as far away from the upper limit of the equipment as 
possible. This can not only prolong the service life of the 
equipment and reduce the probability of equipment failure, 
but also reduce the degradation probability of microstructure 
and properties of the billet due to unstable loading. Therefore, 
the maximum forging force is chosen as the optimization 
object. The ideal compromise point needs to be found because 
the maximum forging force (the smaller the better) and the 
diameter of the disk (the larger the better) are contradictory. It 
has been found that the forging force shows a sharp 
acceleration when it is close to the upper limit of the 
equipment, so the forging force at the point before sharp 
acceleration can be identified as the optimal load, as shown in 
Fig. 5a. The optimal load F is equal to the total force of all 
element nodes in contact with the upper die along the Z 
direction, which can be expressed as:

F =∑
i = 1

n

σiz siz (1)

where σiz is the maximum stress in Z direction of the ith billet 
element in contact with the upper die, siz is the contact area of 
the ith billet element in Z direction in contact with the upper 
die, and n is the total number of billet elements in contact with 
the upper die.

High mechanical performances are necessary for turbine 
disk, which depend on the microstructure. The second 
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Fig.3　Meshed FEM model of 3D (a) and 2D (b)

199.4    200.0   200.6   201.1   201.7   202.3

Stroke/mm

10.00    18.00   26.00  34.00    42.00   50.00

Size/μm

Top die
8.19

7.84

7.50

7.15

6.81

6.46

(201.8, 7.72e+08)

Optimal load

a

F
or

gi
ng

 L
oa

d/
×

10
8  N

63.666

50.933

38.199

25.466

12.733

0.000

F
re

qu
en

cy
/%

b
Min: 23.81

Max: 41.84

AVG: 29.45

SD: 2.283

Fig.5　Prediction of forging load (a) and AVG and SD (b) of 

GH4706 superalloy turbine disk

1889



Zheng Deyu et al. / Rare Metal Materials and Engineering, 2024, 53(7):1887-1896

optimization object is the microstructure. Dynamic 
recrystallization (DRX) is the primary way of grain 
refinement for nickel based alloys[16]. Therefore, the object has 
two aspects, the AVG and the grain attribution uniformity, 
which is measured by SD, as shown in Fig.5b. The grain size 
of each element varies and is independent of the element 
number due to the discretization and non-uniform deformation 
behavior of FEM simulation. The AVG in Fig.5b refers to the 
total average value of all grain sizes (including 
recrystallization and non-recrystallization) under the total 
volume, and SD represents the overall distribution and 
fluctuation of grain size inside the total volume. The object 
functions of AVG and SD under optimized load are expressed 
as follows:

AVG =
∑
i = 1

m ∫didVi

∑
i = 1

m ∫dVi

 (2)
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where m is the total element number of billet and di is the 
actual AVG of each element in the simulation.

In addition, two further optimization objects, the diameter 
of turbine disk and the mass of billet (the larger the turbine 
disk 􀆳 s diameter, the better; the smaller the billet 􀆳 s mass, the 
better), were focused in this study while considering the 
product performance and cost.
2.3  Parameter variable selection and orthogonal 

experimental design

We studied the design of turbine disk pre-forging using the 
optimization method proposed above. The major variables 
influence the objects output of turbine disk, including the 
shape parameters of billet (the radius r, external height h1, and 
internal height h2), strain rate ε̇, billet forging temperature T1, 
and die preheating temperature T2. The placement shape and 
corner form of the billet are determined by the die shape, 
which is fixed, and the shape parameters are shown in Fig.3. 
Due to the load limit of press (the strain rate cannot be too 
high and the temperature cannot be too low) and the 
requirements for microstructure (the strain rate cannot be too 
low and the temperature cannot be too high), the selection 
ranges of strain rate, strain (i. e. shape), and temperature are 
very rigorous. Before selecting the parameter range, several 
simulation tests have been carried out based on the previous 
research results (as shown in Fig. 6a) to obtain the best 
parameter selection range (as shown in Fig. 6b). The optimal 
orthogonal test scheme of strain rate, strain, and temperature 
is obtained within the determined parameter selection range, 
as shown in Fig. 6b and Table 1. Therefore, the selected 
parameter range and the obtained optimization results can 
ensure that the actual optimal parameter combination will not 
have too many jumps near the optimal parameters.

The volume variation of billet can be controlled by 

changing the r, h1, and h2 of the billet. According to Ref.[16], 

the optimal strain range for GH4706 is between 0.4 and 0.6, 

and from the fluctuation range, the shape size is determined, 

as shown in Table 1. When the lnZ value, where Z=

ε̇∙exp (52365/T )[16], is lower than 34 (Fig. 6a), the 

experimental results show that GH4706 alloy exhibits mixing 

of multi-level grain size, which is harmful to the mechanical 

properties of turbine disk. The forging load increases with the 

rise in strain rate and the reduction in temperature. Therefore, 

by carefully avoiding mixing of grain size region and 

minimizing load, the optimal orthogonal tests scheme for 

strain rate ε̇ and temperature T1 is obtained, as shown in 

Fig.6b. The range of T2 is set to 280‒400 °C, considering the 

temperature tolerance range of steel die. It is decided to use 

L25 orthogonal tests with 6 factors and 5 levels. The factor-

levels are shown in Table 1 and the tests arrangement and 

results are shown in Table 2, where G is billet mass and R is 

final forging radius. It can be seen that the results of each 
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Table 1　Factor-level of parameters

Level

1

2

3

4

5

T1/°C

1080

1090

1100

1110

1120

T2/°C

280

310

340

370

400

ε̇/s-1

0.02

0.03

0.04

0.05

0.06

Shape parameter/mm

r

970

975

980

985

990

h1

600

605

610

615

620

h2

470

475

480

485

490
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target show fluctuations and differences. According to the 
principle that the smaller the G and the larger the F, the better 
the SD and AVG of grain distribution, and the larger the R, the 
better. The best schemes for single objective are G (scheme 
No. 1), F (scheme No. 3), R (scheme No. 22), SD (scheme 
No. 21), and AVG (scheme No. 5). However, the best scheme 
must comprehensively consider all objective results, which 
requires SNR analysis, ANOVA analysis, and weighted SNR 

analysis, considering the importance of each objective to all 
simulation results, and the best compromise solution can be 
obtained by considering all objectives through quantification 
and comparison.

33  Analysis and Optimization of Simulation Results  Analysis and Optimization of Simulation Results

3.1  Effect of field distribution on AVG

The values and distributions of temperature, strain, and 
strain rate have an impact on the evolution and distribution of 
AVG. To find how the three parameters affect AVG, 25 groups 
of orthogonal experiments provide the field distribution data 
for the three parameters, as shown in Fig. 7a ‒ 7c. It can be 
found that AVG rises with increasing the temperature and 
strain and decreasing the strain rate. It further shows that AVG 
exhibits three characteristic regions under the combined effect 
of temperature fields and strain rate fields. ① Medium AVG 
appears at “low temperature/low strain rate” field or “high 
temperature/high strain rate” field. ② Large AVG appears at 
“high temperature/low strain rate” field. ③ Small AVG 
appears at “low temperature/high strain rate” field. These 
conclusions are consistent with previous studies[16].
3.2  SNR analysis

The Taguchi approach converts the results of the FEM 
analysis into the values of the evaluation characteristics in the 
optimal parameter analysis by the SNR value rather than the 
mean value. The major effects of each parameter and its levels 
on the optimized item can be estimated by this value. The 
SNR can be defined as follows based on the requirements of 
the object functions, where Eq.(4) is the smaller the better and 
Eq.(5) is the larger the better:

S
N

= -10lgk 2
i  (4)

S
N

= -10lg
1
k 2

i

 (5)

where ki is the characteristic value of the ith test. In order to 
obtain the best process parameters, R should be as large as 
possible for Eq.(5); G, F, AVG, and SD should be as small as 
possible for Eq.(4). After FEM simulation and SNR analysis, 
the multi-object function values and their SNR results under 
25 test conditions are calculated, as shown in Table 3.

For each level, the average of the response characteristic 

Table 2　Orthogonal experimental design scheme and simulation 

results

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
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25

T1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

T2

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

ε̇

1

2

3

4

5

2

3

4

5

1

3

4

5

1

2

4

5

1

2

3

5

1

2

3

4

r

1

2

3

4

5

3

4

5

1

2

5

1

2

3

4

2
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4

5

1

4

5

1

2

3
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1

2

3

4

5

4

5

1

2

3

2

3

4

5

1

5
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2
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G/t
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values is calculated by Eq.(6):
-
ki =

1
n∑i = 1

n

ki (6)

where n is the number of experiments at a certain level. In 
array L25, n is a constant of 5.
3.3  Multi-object optimization based on method of weighting

For the multi-objective optimization problem in this study, 
the weighted Taguchi method is used to transform the multi-
objective optimization problem into a total objective 
optimization problem composed of various optimization 
objectives with different weights for analysis, to investigate 
the influence of weight distribution on the total optimization 
result. The weight ratio of each optimization object is 
calculated according to the importance of each optimization 
object. The most important objects are the items AVG and SD, 
which reflect the microstructure of turbine disk, followed by 
F, G, and R. The multi-object SNR (S/N)i in the ith experiment 
is defined as follows:

(
S
N

) i =∑
k = 1

5

ωk (
S
N

)ki (7)

∑
k = 1

5

ωk = 1 (8)

where (S/N)ki is the kth single object SNR in the ith 
experiment, ωk is the weighting factor of the kth single object 

SNR, and k is the number of optimization objects. Table 4 
shows the multi-object SNR with different weighting factor 
combinations. Three weighting schemes are used for analysis 
to increase applicability. Table 5 shows the weighted SNR 
results which are plotted in Fig.8.

The larger the SNR output value of Taguchi method, the 
smaller the variance between the characteristic value and     
the expected value, indicating that the scheme is more 
optimized. Two points can be drawn from the curves in   
Fig. 8. One is that the shapes of the three curves are con-
sistent, which shows that the weight distribution is indepen-
dent of the curve shape, that is, independent of the scheme 􀆳s 
SNR; the other is the shape of the curve, which indicates that 
No. 21 (515432) is the best parameters combination, and 
No. 18 (431425) is the worst parameters combination. This 
conclusion is consistent with the previous study (Fig. 6b, in 

Table 3　Multi-object S/N ratio (dB)

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

S/N for G

‒21.452

‒21.620

‒21.784

‒21.945

‒22.110

‒21.868

‒21.924

‒21.875

‒21.540

‒21.706

‒21.959

‒21.627

‒21.677

‒21.840

‒21.798

‒21.763

‒21.713

‒21.875

‒21.938

‒21.605

‒21.882

‒22.042

‒21.706

‒21.649

‒21.699

S/N for F

‒57.754

‒58.018

‒57.189

‒57.491

‒57.818

‒57.977

‒57.443

‒57.652

‒57.893

‒57.626

‒57.487

‒57.894

‒57.982

‒57.853

‒57.368

‒57.787

‒57.748

‒57.939

‒58.009

‒57.567

‒57.635

‒57.239

‒57.625

‒57.729

‒57.674

S/N for R

60.754

60.759

60.772

60.797

60.828

60.816

60.810

60.775

60.739

60.796

60.813

60.779

60.776

60.915

60.804

60.831

60.785

61.136

60.991

60.808

60.859

61.244

61.039

60.882

60.848

S/N for SD

‒7.082

‒10.397

‒9.714

‒8.595

‒5.343

‒7.748

‒8.131

‒8.912

‒5.933

‒9.337

‒5.756

‒5.666

‒7.197

‒10.130

‒6.235

‒7.005

‒7.495

‒11.029

‒7.889

‒8.028

‒2.076

‒5.845

‒5.933

‒5.529

‒9.571

S/N for AVG

‒29.218

‒29.600

‒29.097

‒28.787

‒28.062

‒29.657

‒29.396

‒29.571

‒28.787

‒30.291

‒29.396

‒29.426

‒29.396

‒31.005

‒30.021

‒30.076

‒29.799

‒31.387

‒30.681

‒30.578

‒29.455

‒30.906

‒30.756

‒30.317

‒31.150

Table 4　SNR weight distribution cases

Case

1

2

3

ω1 for G

0.1

0.2

0.1

ω2 for F

0.2

0.2

0.2

ω3 for R

0.1

0.1

0.2

ω4 for SD

0.3

0.2

0.3

ω5 for AVG

0.3

0.3

0.2

Table 5　Average S/N ratios for three cases (dB)

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Case

1

‒18.511

‒19.689

‒19.182

‒18.828

‒17.713

‒18.922

‒18.858

‒19.185

‒18.075

‒19.505

‒18.158

‒18.191

‒18.664

‒20.004

‒18.450

‒18.775

‒18.831

‒20.386

‒19.267

‒19.175

‒17.089

‒18.553

‒18.598

‒18.376

‒19.836

2

‒19.948

‒20.811

‒20.389

‒20.163

‒19.390

‒20.334

‒20.237

‒20.482

‒19.635

‒20.742

‒19.778

‒19.787

‒20.112

‒21.175

‒20.006

‒20.251

‒20.252

‒21.471

‒20.672

‒20.533

‒19.069

‒20.173

‒20.176

‒19.988

‒21.049

3

‒9.513

‒10.653

‒10.195

‒9.869

‒8.824

‒9.875

‒9.837

‒10.151

‒9.122

‒10.396

‒9.137

‒9.171

‒9.647

‒10.812

‒9.367

‒9.684

‒9.772

‒11.134

‒10.100

‒10.036

‒8.057

‒9.338

‒9.419

‒9.256

‒10.636

1892



Zheng Deyu et al. / Rare Metal Materials and Engineering, 2024, 53(7):1887-1896

which the No.18 is located in the mixed grain size region in 
the lower right corner).
3.4  Contributions of process parameters based on ANOVA 

analysis 

ANOVA is used to assess the influence of process 
parameters on the object optimization. SS is defined as      
total square sum of deviation between multi-object SNR     
and total average SNR, which is used to evaluate the  
influence significance of process parameters on the 
optimization objects. The total average SNR can be calculated 

as follows:

(
S
N

)avg =
1
q∑i = 1

q

(
S
N

) i (9)

The SS and the ith influencing factor SSi can be calculated 

as:

SS =∑
i = 1

q
é
ë
êêêê ù

û
úúúú(

S
N

) i - (
S
N

)avg

2

 (10)

SS i =∑
j = 1

p

p é
ë
êêêê ù

û
úúúú(

S
N

) ij
avg - (

S
N

)avg

2

 (11)

where (S/N ) ij
avg is the average SNR of the characteristic value 

of the ith factor at the jth level. The results are shown in Table 

6, and its distribution is plotted in Fig.8. The contribution ratio 

of the ith factor Ci is given by Eq. (12), and the results are 

shown in Table 7 and plotted in Fig.9.

Ci =
SS i

SS
× 100% (12)

As can be seen from Fig.9, the average SNR distribution of 

the characteristic value of the ith factor at the jth level 

fluctuates in a certain extent, and the overall performance is 

relatively uniform, which is due to the small range of 

parameters. The parameter contribution ratios according to the 

data in Table 6 are calculated further. The influencing degree 

Fig.8　Average SNR of three weight distribution cases

Table 6　Average SNR of the ith factor at the jth level

Level of r

970

975

980

985

990

No.

1

9

12

20

23

2

10

13

16

24

3

6

14

17

25

4

7

15

18

21

5

8

11

19

22

ki

28.9

27.5

29.6

33.8

34.5

30.2

32.7

29.5

31.9

32.8

28.5

30.4

35.5

30.9

36.1

27.5

29.5

31.7

37.1

29.7

25.3

30.1

29.5

34.2

35.1

S
N

‒29.218

‒28.787

‒29.426

‒30.578

‒30.756

‒29.600

‒30.291

‒29.396

‒30.076

‒30.317

‒29.097

‒29.657

‒31.005

‒29.799

‒31.150

‒28.787

‒29.396

‒30.021

‒31.387

‒29.455

‒28.062

‒29.571

‒29.396

‒30.681

‒30.906

( S
N ) ij

avg

‒29.753

‒29.936

‒

30.1416

‒

29.8092

‒

29.7232

Level of h1

600

605

610

615

620

No.

1

8

15

17

24

2

9

11

18

25

3

10

12

19

21

4

6

13

20

22

5

7

14

16

23

ki

28.9

30.1

31.7

30.9

32.8

30.2

27.5

29.5

37.1

36.1

28.5

32.7

29.6

34.2

29.7

27.5

30.4

29.5

33.8

35.1

25.3

29.5

35.5

31.9

34.5

S
N

‒29.218

‒29.571

‒30.021

‒29.799

‒30.317

‒29.600

‒28.787

‒29.396

‒31.387

‒31.150

‒29.097

‒30.291

‒29.426

‒30.681

‒29.455

‒28.787

‒29.657

‒29.396

‒30.578

‒30.906

‒28.062

‒29.396

‒31.005

‒30.076

‒30.756

( S
N ) ij

avg

‒29.7852

‒30.064

‒29.79

‒29.8648

‒29.859

Level of h2

470

475

480

485

490

No.

1

7

13

19

25

2

8

14

20

21

3

9

15

16

22

4

10

11

17

23

5

6

12

18

24

ki

28.9

29.5

29.5

34.2

36.1

30.2

30.1

35.5

33.8

29.7

28.5

27.5

31.7

31.9

35.1

27.5

32.7

29.5

30.9

34.5

25.3

30.4

29.6

37.1

32.8

S
N

‒29.218

‒29.396

‒29.396

‒30.681

‒31.150

‒29.600

‒29.571

‒31.005

‒30.578

‒29.455

‒29.097

‒28.787

‒30.021

‒30.076

‒30.906

‒28.787

‒30.291

‒29.396

‒29.799

‒30.756

‒28.062

‒29.657

‒29.426

‒31.387

‒30.317

( S
N ) ij

avg

‒29.9682

‒30.0418

‒29.7774

‒29.8058

‒29.7698
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of parameters on the optimization objects ranges as follows: 
billet temperature T1 (47.37%) >strain rate ε̇ (31.46%) >billet 

shape (9.35%+3.78%+4.46%=16.59%) >>die temperature T2 

(4.58%). Among the billet shape variables, radius r has the 

greatest influence (8.35%), followed by h2 (4.46%) and h1 

(3.78%). Die temperature has little effect. Therefore, it is 

possible to design process parameters through this quantitative 

relationship.

44  Results and Verification  Results and Verification

4.1  Simulation verification

It is easy to find from Fig. 8 that the best factor level 

combination is No. 21 (515432). Forging load, AVG, and SD 

reach the optimal configuration when the process parameters 

are T1=1120 °C, T2=280 °C, ε̇=0.06, r=985 mm, h1=610 mm, 

and h2=475 mm. FEM simulation results are used to compare 

the worst scheme No.18 (431425) with the optimized scheme 

No.21, as shown in Fig.10. Fig.10a and 10b show that AVG 

Table 6　Average SNR of the ith factor at the jth level (continued)

Level of T1

1080

1090

1100

1110

1120

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ki

28.9

30.2

28.5

27.5

25.3

30.4

29.5

30.1

27.5

32.7

29.5

29.6

29.5

35.5

31.7

31.9

30.9

37.1

34.2

33.8

29.7

35.1

34.5

32.8

36.1

S
N

‒29.218

‒29.600

‒29.097

‒28.787

‒28.062

‒29.657

‒29.396

‒29.571

‒28.787

‒30.291

‒29.396

‒29.426

‒29.396

‒31.005

‒30.021

‒30.076

‒29.799

‒31.387

‒30.681

‒30.578

‒29.455

‒30.906

‒30.756

‒30.317

‒31.150

( S
N ) ij

avg

‒28.953

‒29.540

‒29.849

‒30.504

‒30.517

Level of T2

280

310

340

370

400

No.

1

6

11

16

21

2

7

12

17

22

3

8

13

18

23

4

9

14

19

24

5

10

15

20

25

ki

28.9

30.4

29.5

31.9

29.7

30.2

29.5

29.6

30.9

35.1

28.5

30.1

29.5

37.1

34.5

27.5

27.5

35.5

34.2

32.8

25.3

32.7

31.7

33.8

36.1

S
N

‒29.218

‒29.657

‒29.396

‒30.076

‒29.455

‒29.600

‒29.396

‒29.426

‒29.799

‒30.906

‒29.097

‒29.571

‒29.396

‒31.387

‒30.756

‒28.787

‒28.787

‒31.005

‒30.681

‒30.317

‒28.062

‒30.291

‒30.021

‒30.578

‒31.150

( S
N ) ij

avg

‒29.5604

‒29.8254

‒30.0414

‒29.9154

‒30.0204

Level of ε̇

0.02

0.03

0.04

0.05

0.06

No.

1

10

14

18

22

2

6

15

19

23

3

7

11

20

24

4

8

12

16

25

5

9

13

17

21

ki

28.9

32.7

35.5

37.1

35.1

30.2

30.4

31.7

34.2

34.5

28.5

29.5

29.5

33.8

32.8

27.5

30.1

29.6

31.9

36.1

25.3

27.5

29.5

30.9

29.7

S
N

‒29.218

‒30.291

‒31.005

‒31.387

‒30.906

‒29.600

‒29.657

‒30.021

‒30.681

‒30.756

‒29.097

‒29.396

‒29.396

‒30.578

‒30.317

‒28.787

‒29.571

‒29.426

‒30.076

‒31.150

‒28.062

‒28.787

‒29.396

‒29.799

‒29.455

( S
N ) ij

avg

‒30.5614

‒30.143

‒29.7568

‒29.802

‒29.0998

Table 7　Contribution ratios of the ith factor

Variable

Value

Contribution/%

SSi of T1

7.854

47.37

SSi of T2

0.759

4.58

SSi of ε̇

5.216

31.46

SSi of billet shape

r

1.385

8.35

h1

0.627

3.78

h2

0.739

4.46

(
S
N

)avg

‒29.8726

-

SS

16.581

-

-50

-40

-30

-20

-10

0
1

2
3

4
5 r

h1

h2

T2
T1

ε̇

(S
/N

)ij av
g

Level Fact
or

Fig.9　Average SNR distribution of the ith factor at the jth level
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and SD are considerably optimized from No.18 to No.21, and 
Fig. 10c shows that the load is also reduced. This shows that 
after SNR and ANOVA analysis of the multi-objective output 
results of orthogonal schemes, the best scheme obtained has 
been verified by the simulation results.
4.2  Experiment verification

Isothermal compression tests and microstructure characteri-
zation method are used for experimental verification. The tests 
of standard specimens are conducted using the parameters of 
No. 18 and No. 21, based on the simulation results. It can be 
seen from Fig.11 that coarse grains are generated at the center 
of disk. Therefore, the compression strain refers to the strain 
at this position. The strain cloud diagrams of No.18 and No.21 
in Fig. 11 indicate that the strain of No. 18 is slightly greater 
than that of No. 21 near the disk 􀆳 s center. Therefore, strain 
values of 0.8 (No.18) and 0.7 (No.21) are chosen. It should be 
noted that these tests only verify the microstructure of local 
position of the turbine disk at the same strain, and cannot 
verify the overall microstructure of the turbine disk. However, 
the test results can also support and prove the effectiveness of 
this research method in essence. Two samples were cut and 
wire discharged to dimensions with 8 mm in diameter and 12 
mm in height. Each sample is heated to the deformation 
temperature at a heating rate of 10 K/s and held for 180 s to 
reduce the anisotropy of flow deformation behavior on a 
computer-controlled servo hydraulic Gleeble-1500 thermal 
simulator. It is immediately quenched in water after the 
compression tests, and the true stress and strain curves are 
automatically recorded. The microstructure is then scrutinized 
in the middle to create metallographic diagrams, as shown in 
Fig. 12. The grain size of the metallographic diagrams is 
calculated and recorded in Table 8.

From Fig.12 and Table 8, it can be observed that No.21 has 
a more uniform and finer microstructure than No. 18, with a 
relative deviation less than 7%. This study approach can be 

used for multi-objective optimization control of load, and 

microstructure of GH4706 alloy super large forgings is further 

demonstrated experimentally by the above.

55  Conclusions  Conclusions

1) The FEM simulation results show that the finest 

microstructure appears at low temperature and high strain rate 

field.

2) The influence of SNR weight distribution on the 

optimization results can be ignored. Three weight distribution 

schemes show that No. 21 (515432, temperature=1120 ° C, 

strain rate=0.06 s-1, pre-forging size=985/610/475 mm, die 

temperature=280 ° C) simulation is the best parameter 

combination to obtain the most uniform and the finest 

microstructure with the optimal forging load under this 

condition.

3) The influence degree of the optimization objects     

ranges in the following orders: billet temperature>strain rate>

billet shape>>die temperature. Among the shape variables, 

radius r has the greatest influence, followed by h2 and h1.     

Die temperature has little effect on the optimization       

Table 8　AVG and relative deviation between simulation and 

experiment results

No.

18

21

Parameter

1110 °C /0.02 s-1

1120 °C /0.06 s-1

Simulated

AVG/μm

37.1

29.7

Experimental

AVG/μm

39.6

31.5

Relative

deviation/%

6.74

6.06

0.0         0.2         0.4          0.6          0.8

True Strain

160

140

120

100

80

60

40

20

0

T
ru

e 
S

tr
es

s/
M

P
a

1120 °C/0.06 s-1

1110 °C/0.02 s-1

No.21 No.18

Fig.12　Experimental results of flow stress and microstructure

Fig.11　Simulated strain distribution of No.18 (a) and No.21 (b)

0.0            20.0            40.0
Size/μm

54.40
43.52

32.64

21.76

10.88

0.00

F
re

qu
en

cy
/%

Min: 24.9
Max: 55.1
AVG: 37.1
SD: 3.56

a

0.0            20.0            40.0
Size/μm

47.277

37.822

28.366

18.911

9.455

0.000

F
re

qu
en

cy
/%

Min: 20.1
Max: 35.6
AVG: 29.7
SD: 1.23

b

No.18              No.21

1000

800

600

400

200

0

Equipment load limit c

Fig.10　AVG of scheme No.18 (a) and No.21 (b); load F of scheme No.18 and No.21 (c)
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objects.
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基于田口法的超大型涡轮盘锻造工艺参数多目标优化

郑德宇，夏玉峰，滕海灏，杨文彬，余盈燕

(重庆大学  材料科学与工程学院，重庆  400044)

摘 要：直径超过2 m的超大型涡轮盘的锻造载荷接近甚至超过了国内最大压力机的极限（800 MN），是真正的极限制造。因此，保持

良好的力学性能和控制锻造载荷是超大型涡轮盘热锻生产过程中必须同时兼顾的2个因素。基于田口法设计了25组不同的热锻参数，采

用SNR和ANOVA方法对有限元模拟结果进行多目标优化分析，获得了最优锻造载荷和最均匀细化的再结晶组织，确定了极端制造条件

下的最佳工艺参数组合（温度1120 ℃，应变速率0.06 s-1，预锻尺寸985/610/475 mm，模具温度280 ℃）。各参数对模拟结果的重要性顺

序如下：变形温度>应变速率>坯料形状>>模具温度。使用最佳参数组合获得的实验结果与数值模拟结果吻合较好，表明该方法可以避

免大量实验和数值模拟工作量，有效地控制超大型锻件的载荷和微观组织。

关键词：多目标优化；有限元模拟；极端制造；微观组织；载荷

作者简介：郑德宇，男，1983年生，博士，重庆大学材料科学与工程学院，重庆  400044，E-mail：13193805@qq.com

1896


