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Abstract: Machine learning prediction models for thin wire-based metal additive manufacturing (MAM) process were proposed, 

aiming at the complex relationship between the process parameters and the geometric characteristics of single track of the deposition 

layer and surface roughness. The effects of laser power, wire feeding speed and scanning speed on the width and height of the single 

track and surface roughness were experimentally studied. The results show that laser power has a significant impact on the width of 

the single track but little effect on the height. As the wire feeding speed increases, the width and height of the single track increase, 

especially the height. The faster the scanning speed, the smaller the width of the single track, while the height does not change much. 

Then, support vector regression (SVR) and artificial neural network (ANN) regression methods were employed to set up prediction 

models. The SVR and ANN regression models perform well in predicting the width, with a smaller root mean square error and a 

higher correlation coefficient R2. Compared with the ANN model, the SVR model performs better both in predicting geometric 

characteristics of single track and surface roughness. Multi-layer thin-walled parts were manufactured to verify the accuracy of the 

models.
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The metal additive manufacturing (MAM) process is 
widely used in equipment manufacturing in aviation, 
aerospace and other fields due to its advantages of rapid 
fabrication speed and low cost[1–6]. The material forms of 
MAM are mainly metal powder and wire, and the wire-based 
MAM is highly concerned due to its low cost, high material 
utilization rate and no dust pollution[7–8]. The accuracy and 
roughness of the fabricated parts are greatly affected by the 
geometric characteristics of the single track of the deposition 
layer[9]. The quality of the single track of the deposition layer 
will be poor and even discontinuous, due to the factors such as 
inappropriate power, wire feeding speed or scanning speed 
ratio, which not only affect the deposition of the current layer, 
but also have adverse effects on subsequent deposition layers, 
and even make the deposition process unable to continue. 

Therefore, studying the influence of process parameters on 
single track deposition of wire-based MAM is of great 
significance for obtaining high-quality parts.

Numerous researchers found that the geometric characte-
ristics of single track deposited by wire-based MAM, such as 
the width, height and wetting angle, have complicated 
relationships with process parameters such as laser power, 
wire feeding speed and scanning speed. Ayed et al[10] used a 
direct energy deposition wire-laser with Precitec coax printer 
station to melt a metallic filler wire to build titanium parts, 
and the process parameters were optimized, by which wire 
feeding speed, travel speed and laser beam power were 
defined as predominant process parameters governing the 
layer deposition. Liu et al[11] proposed a comprehensive quality 
investigation framework based on learning from experimental 

Science Press

ARTICLE

Received date: February 07, 2024
Foundation item: 173 Basic Strengthening Program; Xi􀆳an Science and Technology Plan (21ZCZZHXJS-QCY6-0002)
Corresponding author: Liu Haitao, Ph.D., School of Mechatronic Engineering, Xi 􀆳an Technological University, Xi 􀆳an 710021, P. R. China, E-mail: 429059044@      
qq.com

Copyright © 2024, Northwest Institute for Nonferrous Metal Research. Published by Science Press. All rights reserved.



Liu Haitao et al. / Rare Metal Materials and Engineering, 2024, 53(11):3026-3034

data to obtain high quality microstructural properties of the 
parts and to control the desired part geometry. These studies 
show that the scanning speed and laser power have the most 
significant effects on the width of the single track, and the 
wire feeding speed has more obvious effects on the height. 
Wang et al[12–13] studied a novel wire-based plasma transferred 
arc-laser hybrid additive manufacture process to fabricate 
large-scale titanium parts. In order to improve the deposition 
rate and near-net shape, the processing conditions, including 
the heat source configuration, wire feeding speed, arc-to-laser 
separation distance and travelling speed, were optimized. The 
results show that laser power and travelling speed have more 
significant influence on the deposition layer of the parts than 
other processing parameters.

Based on the research of the single track of deposition 
layer, many scholars have investigated the influence of the 
processing parameters on the surface roughness of the desired 
parts. Xiong et al[14] proposed a methodology based on a laser 
vision system to view the surface appearance on the side face 
of the parts deposited by gas metal arc welding (GMAW) -
based additive manufacturing, and the influential mechanisms 
and evaluation methods of the effect of process parameters, 
such as the ratio of wire feeding speed to travel speed and the 
wire feeding speed, on the surface roughness were set up. Xia 
et al[15] developed a laser sensor based surface roughness 
measuring method for wire arc additive manufacturing 
(WAAM) process, and in order to improve the surface 
integrity of deposited layers, different machine learning 
methods were invested to predict the surface roughness. Their 
studies also provided guidance for surface roughness 
modeling in multi-pass arc welding and cladding. Wu et al[16] 
presented a data fusion approach to predict surface roughness 
in fused deposition modeling processes, which were trained 
by the machine learning algorithms such as random forests, 
support vector regression (SVR), ridge regression and least 
absolute shrinkage and selection operator. Experimental 
results show that these predictive models are capable for 
predicting the surface roughness of additively manufactured 
parts with very high accuracy.

In order to obtain higher surface roughness of parts, using 
thinner wire for MAM based on wire feeding is a good choice. 
However, the diameter of the wire also affects the selection of 
process parameters. Based on the above studies, it can be seen 
that the geometric characteristics of the deposition 
morphology of single track have complex relationships with 
laser power, wire feeding speed and scanning speed. However, 
existing predict models are all obtained for thicker wire, for 
example, the diameter of the wire used in Ref. [12 – 13] and  
Ref. [10–11] was 1.2 and 1.5 mm, respectively. Most of the 
roughness of the parts prepared by MAM with thicker wire is 
above 0.1 mm, which is unable to fabricate parts with lower 
roughness. Therefore, it is necessary to study the influence of 
process parameters on the geometric characteristics of 
deposition morphology under thinner metal wire. Machine 
learning methods, such as random forest, SVR and artificial 
neural network (ANN), must be used to fit the nonlinear 

relationship between input process parameters and output 
index variables, so as to establish a prediction model to guide 
the selection of process parameters to obtain better surface 
roughness.

In this research, a thin wire-based MAM process, with the 
wire diameter of only 0.3 mm, was proposed to obtain 
manufactured parts with lower surface roughness. Based on a 
single track process experiment, a multi-layer thin-wall part 
was prepared. Predictive models derived from machine 
learning algorithms (SVR and ANN regression) were used to 
establish the relationships between the process parameters and 
geometric characteristics of single track and surface roughness 
of deposited parts, so as to provide a strong basis for choosing 
optimal process parameters for high-quality 3D printed parts.

11  Experiment  Experiment

1.1  Experiment setup

The experimental system for thinner wire-based MAM 
process is shown in Fig.1, including IPG-QW150 fiber laser, 
working table, wire feeding system, current preheating 
system, industrial camera, etc. During the deposition process, 
the whole system was placed in the argon protection 
environment box, in which the oxygen content in the 
environment box was less than 10 μL/L.

Preliminary experiments have shown that high power is 
adverse to the preparation of thin wire-based MAM process. 
Therefore, the metal deposition process in this work employed 
a laser as the main heating source and a resistance preheating 
system as the assisted heating source. The assisted heating 
source heated the wire to a half-melt state, making it easy to 
adhere to the substrate or each other. The main heating source, 
a low-power laser, was used to heat the half-melt wire until it 
was totally melted, thereby completing the multi-layer 
deposition and the manufacturing of the desired part.

The preliminary experiments found that the angle between 
the laser beam and the printing direction has a significant 
impact on the single deposition track. If the angle is too small, 
the energy is too concentrated and it is easy to produce 
spheroidization phenomenon; if the angle is too large, energy 
is dispersed and the wire cannot melt. So the angle was set as 
about 110° , and the diameter of the laser spot was 0.3 mm. 
The substrate and the metal wires were all made of Ti-6Al-4V 
alloy with a diameter of 0.3 mm. In the process of wire 
deposition additive manufacturing, the working table, 
including the X-axis and Y-axis, drove the substrate to 
complete the filling motion of wire deposition. After a layer of 
deposition was completed, the Z-axis descended by thickness 
of one layer, and the filling motion was repeated until the 
entire deposition process of the part was completed.
1.2  Geometric characteristics of single track of deposition 

layer
The typical single track of the deposition layer is shown in 

Fig.2, and its main geometric features can be characterized by 
three parameters: the width of the single track D, the height of 
the single track H and wetting angle θ. With the assumption 
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that the cross-section of the track is an arc, the wetting angle 
can be characterized by the width and height, which is 
considered as a dependent parameter and will not be discussed 
in this research. The width D and height H of the single track 
determine the minimum formed element, which stably control 
the shape accuracy of the current layer and the layer in 
stacking direction.

In addition, the features of the single track also have a 
significant impact on the surface quality of the manufactured 
parts. A deposition layer with an ideal width/height ratio is 
more conducive to the deposition of the next layer on the basis 
of the current layer, which reduces the step effect between two 
layers. Therefore, it is necessary to study the complicated 

relationships between the geometric characteristics of single 
track and process parameters, in order to control the size of 
deposition element and to ensure the stable forming.
1.3  Deposition element

The process parameters affecting the single track of the 
deposition layer mainly include laser power, wire feeding 
speed and scanning speed. The parameters given in the expe-
riments are shown in Table 1, and a total of 27 sets of process 
experiments were carried out. The main chemical composition 
of the wire material, Ti-6Al-4V, is shown in Table 2.

When the laser power is low (<100 W), the input energy is 
insufficient to melt the wire, or it is in a semi-molten state and 
cannot be bonded to the substrate tightly. Meanwhile, if the 
laser power is too high, that is, the input energy is excessive, 
the resulting formed element has a larger width-to-height ratio 
and a smaller wetting angle, which not only reduces the 
manufacturing efficiency, but also causes excessive remelting 
between multi-layers due to heat accumulation. Therefore, the 
range of the laser power is 100‒200 W. When the wire feeding 
speed and scanning speed are constant, the basic relationships 
between laser power and the width/height of single track of 
the deposition layer are shown in Fig. 3a. It can be seen that 
the laser power has a more significant impact on the width 
with a linear positive correlation relationship, and slightly 
affects the height with an inverse correlation relationship. This 
is mainly because the higher the laser power, the better the 
flowability of the wire after melting, resulting in the increase 
in the width of the single track and decrease in its height.

Under a certain laser power (175 W) and scanning speed 
(120 mm/min), as the wire feeding speed increases, more 

Fig.1　Experimental system for thinner wire-based MAM process: 

(a) vacuum chamber and (b) feeding angle between the laser 

beam and the printing direction

Fig.2　Geometric characteristics of the single track

Table 1　Parameters of thin wire-based MAM process

Parameter

Laser power/W

Wire feeding speed/mm·min-1

Scanning speed/mm·min-1

Value

100, 125, 150, 175, 200

60, 120, 180, 240, 300, 360

150, 180, 210, 240, 270, 300

Table 2　Chemical composition of wire material Ti-6Al-4V (wt%)

Al

5.40

Si

0.15

Fe

0.30

V

3.41

C

11

O

0.15

N

0.15

Ti

Bal.

Fig.3　Relationships of laser power (a), wire feeding speed (b) and scanning speed (c) with respect to the width and height of single track of the 

deposition layer
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material enters the melt pool, resulting in an increase in the 
width and height of the single track, especially the height, as 
shown in Fig.3b.

When the laser power and wire feeding speed are constant, 
the faster the scanning speed, the less energy input into the 
molten pool and the less material entering the molten pool per 
unit time. Therefore, the width of the single track of 
deposition layer decreases, and the height changes slightly, as 
shown in Fig.3c.
1.4  Roughness of multi-layer parts

On the basis of single track process experiments, multi-
layer stacking experiment was carried out to prepare thin-
walled parts. 50 layers are deposited, with a total length of 30 
mm, as shown in Fig.4. Confocal microscope is employed to 
measure the roughness Ra of a set of 2 mm×2 mm surface in 
the middle of thin-walled parts. 6 sets of Ra values are adopted 
for each surface, the average of all measuring results is used 
as the final surface roughness, and the standard deviation is 
taken as the error range, as shown in Fig. 5 – 7. Overall, the 
higher the laser power, the lower the surface roughness, and 
an approximately linear relationship is observed. The 
relationship of the wire feeding speed and scanning speed 
with respect to surface roughness is the same as that of the 
laser power.
1.5  Inter-layer temperature

Inter-layer temperature affects the microstructure and grain 
size of metal parts. Higher temperatures promote grain 
growth, while lower temperatures result in smaller grain sizes. 
Proper control of inter-layer temperature helps to achieve the 

desired microstructure, thereby influencing the mechanical 

properties and heat resistance of the material. Fig. 8 shows 

scanning electron microscope (SEM) images of the cross-

section of thin-walled part. It can be observed that the cross-

section of the thin-walled component is dense. Due to the 

repeated increase and decrease in temperature during the 

printing process, the internal grains of the component are 

small, resulting in good mechanical performance.

22  Machine Learning Prediction Models  Machine Learning Prediction Models

According to the research on the influence of process 

parameters on the geometric characteristics of single track and 
Fig.4　Roughness measurement for multi-layer thin-walled parts

Fig.5　Influence of laser power on surface roughness Ra

Fig.6　Influence of wire feeding speed on surface roughness Ra

Fig.7　Influence of scanning speed on surface roughness Ra

Fig.8　SEM image of the cross-section of thin-walled part

3029



Liu Haitao et al. / Rare Metal Materials and Engineering, 2024, 53(11):3026-3034

surface roughness of the parts deposited by multi-layer 
mentioned above, it is very difficult to choose appropriate 
process parameters to obtain desired parts with high accuracy 
and low surface roughness. Predicting the geometric features 
and surface roughness through process parameters is 
essentially a regression problem based on machine learning, 
so in this work, SVR and ANN methods are used to establish 
regression prediction models.
2.1  SVR

It is well known that the aim of support vector machine      
is to find a separation hyperplane by maximizing the interval, 
so that the majority of sample points are located outside       
the two decision boundary, as shown in Fig. 9a. Although  
SVR also seeks to maximize the interval, it considers the 
points within the decision boundary, so as to make as many 
sample points as possible within the interval and thus the 
hyperplane is the regression prediction model, which is shown 
in Fig.9b.

SVR can be formulated as a convex optimization problem, 
which can be expressed by Eq.(1).

min
w

1
2
 ω 2

+ C∑
i = 1

N ( )ξ i + ξ̂ i

s.t. yi - ω
T xi - b ≤ ε + ξ i,  ω

T xi + b - yi ≤ ε + ξ̂ i (1)

where C >0 is the trade-off parameter; ξ and ξ̂ are relaxation 

factors; both ξ and ξ̂ are lager than 0.
2.2  ANN regression

ANN is widely used to fit nonlinear relationships and it is 
mainly composed of input layer (3 nodes in this study, 
including laser power, wire feeding speed and scanning 
speed), hidden layer (10 layers, Sigmoid function is chosen as 
the activation function) and output layer (1 node, i. e. the 
width/height of single track or the surface roughness), as 

shown in Fig. 10. The input layer variables enter the hidden 
layer node after linear combination wixi+bi, and the hidden 
layer nodes enter the output layer nodes after the activation of 
the Sigmaid function. When neural network is applied to 
regression analysis, ReLU function is employed to calculate 
the sum of the output as the final value to obtain the predicted 
width, height or surface roughness.
2.3  Data for model training

When predicting the width and height of single track, 
additional 10 sets of data are added to the previous 17 sets of 
process experiments mentioned in Section 1.3, so a total of 27 
sets of experimental data under different laser powers, wire 
feeding speeds and scanning speeds are used as training and 
testing data, as shown in Table 3. When predicting the surface 
roughness, 17 sets of data mentioned in Section 1.4 are still 
used, as shown in Table 4.

The correlation coefficient R2 and root mean square error 
(RMSE) are taken as performance indicators of the regression 
models, and the calculation formula for R2 is as follows:

R2 = 1 -
SSE
SST

(2)

where SSE is the sum of squared residuals, representing the 
error between the observed values and the predicted values in 
the model, and its calculation formula is as follows:

SSE = ∑( yi - ŷi ) 2
(3)

where yi is the actual observed value, and ŷi is the predicted 
value. SST is the total sum of squares, representing the total 
deviation between the observed values and their mean values  
(ȳ, in Eq(4)) which can be calculated as:

SST = ∑( yi - ȳ) 2
(4)

The calculation formula for RMSE is as follows:

RMSE =
∑( )yi - ŷi

2

n
(5)

33  Prediction Model Analysis Results  Prediction Model Analysis Results

3.1  Regression model for the morphology of single track 

Fig. 11 shows the actual value and the regression model 
prediction for the width of single track using SVR and ANN, 
in which the diagonal lines are the perfect prediction values, 
and the blue spots are the observed values, i. e. the 
experimental data points. It can be seen that both SVR and 

Fig.9　Schematics of support vector machine (a) and SVR (b) Fig.10　Schematic of ANN model
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ANN methods perform well in predicting the width of single 

track, and this conclusion can also be seen in Fig. 12, which 

shows the errors of the width regression models using the two 

methods. The predicting accuracy of SVR is slightly better 

than that of ANN, with RMSE=33.50 and R2=0.95, as shown 

in Table 5. This indicates that the regression models for the 

width of single track have strong correlation and obvious 

patterns.

Fig. 13 shows that the regression model ANN has better 

accuracy in predicting the height of single track than the SVR, 

with RMSE=22.9 and R2=0.83, indicating that ANN model for 

the height of single track has low correlation and poor pattern. 

The SVR has the same problem, with R2=0.72, as shown in 

Table 5.

Similarly, the errors of the two regression models are large 

at some experimental data points, as shown in Fig.14, which is 

because the height of single track has a significant positive 

relationship with the wire feeding speed, while the influence 
of laser power and scanning speed is not as significant as that 

of the wire feeding speed, which can be seen from Fig.3, so 

the SVR and ANN regression models for the height are less 

patterned than that for the width.

3.2  Regression model for surface roughness 

Fig.15 shows the actual value and regression model predic-

Table 3　Training data for the prediction of width and height of 

single track

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Laser

power/W

100

125

150

175

200

175

175

175

175

175

175

175

175

175

175

175

175

150

150

150

125

125

125

100

100

200

200

Wire feeding 

speed/mm·min-1

120

120

120

120

120

60

120

180

240

300

360

120

120

120

120

120

120

180

240

180

240

180

240

300

180

60

60

Scanning speed/

mm·min-1

120

120

120

120

120

150

150

150

150

150

150

120

150

180

210

240

270

180

180

150

180

180

210

150

210

210

270

Width/

μm

441.464

656.896

792.826

897.362

997.025

895.524

897.299

902.573

920.700

922.361

954.970

890.090

870.198

855.873

846.632

837.869

818.026

800.338

806.877

798.363

676.951

656.324

667.653

587.965

479.862

950.235

955.530

Height/

μm

228.831

172.994

140.552

149.617

129.686

61.268

118.974

149.560

184.688

247.828

291.914

133.346

129.730

129.742

127.928

129.730

129.730

142.561

143.252

139.551

189.457

147.369

186.567

236.369

152.645

65.556

70.232

Table 4　Training data for the prediction of surface roughness

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Laser
power/W

100

125

150

175

200

125

125

125

125

125

125

150

150

150

150

150

150

Wire feeding
speed/mm·min-1

180

180

180

180

180

60

120

180

240

300

360

120

120

120

120

120

120

Scanning speed/
mm·min-1

120

120

120

120

120

150

150

150

150

150

150

120

150

180

210

240

270

Surface
roughness/μm

1.836

1.747

1.511

1.327

1.023

1.025

1.249

1.475

1.833

2.119

2.530

1.133

1.346

1.491

1.600

1.724

1.946

Fig.11　Actual value and the regression model prediction for the 

width of single track using SVR (a) and ANN (b)
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tion for the surface roughness of thin-walled parts using SVR 
and ANN. Fig. 16 is the error response diagrams of the two 
methods, and the comparison of the RMSE and R2 is shown in 
Table 6. It can be seen that the accuracy of the regression 
model SVR is much better than that of ANN, with the RMSE=
0.15 and R2=0.86, and the R2 of regression model ANN is only 
0.53, which indicates that the patternity of the

regression model SVR is more obvious than that of ANN.

Overall, SVR and ANN methods perform better in 

predicting the width and height of single track than in 
predicting surface roughness. The reason for this phenomenon 

is that the relationship between the surface roughness of parts 
and process parameters is not stable. Other interfering factors,

such as the consistency of the silk material and the degree of 

curling, can cause changes in surface roughness, which are 
difficult to quantify and can only be eliminated as much as 
possible.

44  Production of Thin-Walled Parts  Production of Thin-Walled Parts

Based on the above regression models, suitable process 
parameters are selected, by which multi-layer thin-walled 

Table 5　RMSE and R2 of the regression model SVR and ANN in 

predicting width and height of single track

Parameter

Width

Height

RMSE

SVR

33.50

29.40

ANN

46.50

22.90

R2

SVR

0.95

0.72

ANN

0.90

0.83

Fig.12　Error response diagrams of the regression model SVR (a) and ANN (b) for the prediction of width of single track

Fig.13　Actual value and the regression model prediction for the height of single track using SVR (a) and ANN (b)

Fig.14　Error response diagrams of the regression model SVR (a) and ANN (b) for the prediction of height of single track
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parts are produced, as shown in Fig.17 and Fig.18, which eff-
ectively verify the accuracy of the model.

55  Conclusions  Conclusions

1) The laser power has a significant impact on the width of 
single track of deposition layer, showing a linear positive 
relationship with width, while it slightly affecting the height 
of a single channel, showing an inverse proportional 
relationship with height.

2) At a certain laser power and scanning speed, as the wire 
feeding speed increases, more material enters the melt pool, 
and the width and height of the single track increase, 
especially the height.

3) When the laser power and wire feeding speed are 
constant, the faster the scanning speed, the smaller the width 
of the single track, and the height changes little.

4) Due to the repeated increase and decrease in temperature 
during the printing process, the internal grains of the 
component are small, resulting in high mechanical 
performance.

5) The higher the laser power, the lower the surface 
roughness, showing an approximately linear relationship 
between the laser power and the surface roughness, and the 
relationship between wire feeding speed/scanning speed and 
surface roughness is similar.

6) The SVR and ANN regression models predict the width 
of the single track more effectively than they predict the 
height, with a smaller RMSE and a higher correlation 
coefficient R2. Compared with the ANN model, the SVR 

model performs better both in predicting geometric 

Fig.15　Actual value and regression model prediction for the surface 

roughness using SVR (a) and ANN (b)

Fig.16　Error response diagrams of the regression model SVR (a) 

and ANN (b) for the prediction of surface roughness

Table 6　RMSE and R2 of the regression model SVR and ANN in 

predicting surface roughness

Model

SVK

ANN

RMSE

0.15

0.27

R2

0.86

0.53

Thickness=1 mm
Height=50 mm
Diameter=30 mm
Surface roughness, Ra=1.6

Fig.17　Multi-layer annular parts prepared under process parameters 

of laser power=125 W, wire feeding speed=180 mm/min and 

scanning speed=180 mm/min

Thickness=1 mm, Width=200 mm,

Height=50 mm, Surface roughness, Ra=1.6

Fig.18　Multi-layer annular walled parts under process parameters of 

laser power=125 W, wire feeding speed=200 mm/min and 

scanning speed=200 mm/min
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characteristics of single track and surface roughness.
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细丝基金属增材制造沉积层单道几何特征及粗糙度的预测

刘海涛 1，王 磊 2，3，赵振龙 2，王林鑫 3，汤永凯 3

(1. 西安工业大学  机电工程学院，陕西  西安  710021)

(2. 西安交通大学  高端制造装备协同创新中心，陕西  西安  710054)

(3. 国家增材制造创新中心，陕西  西安  710600)

摘 要：针对细丝基金属增材制造（MAM）工艺参数与沉积层单道几何特征和表面粗糙度之间的关系，提出了基于MAM工艺的机器

学习预测模型。实验研究了激光功率、送丝速度和扫描速度对单道轨宽度、高度和表面粗糙度的影响规律。结果表明，激光功率对单道

宽度影响显著，对高度影响不大。随着送丝速度的增加，单道的宽度和高度增加，特别是高度。扫描速度越快，单道宽度越小，而高度

变化不大。采用支持向量回归（SVR）和人工神经网络回归（ANN）方法建立预测模型。SVR和ANN回归模型均具有较好的预测效

果，均方根误差较小，相关系数R2较高。与ANN模型相比，SVR模型在预测单道几何特性和表面粗糙度方面都有更好的效果。在此基

础上制造了多层薄壁零件，验证了模型的准确性。

关键词：细丝基；金属增材制造；机器学习；支持向量回归；人工神经网络回归
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