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Abstract: Machine learning prediction models for thin wire-based metal additive manufacturing (MAM) process were proposed,
aiming at the complex relationship between the process parameters and the geometric characteristics of single track of the deposition
layer and surface roughness. The effects of laser power, wire feeding speed and scanning speed on the width and height of the single
track and surface roughness were experimentally studied. The results show that laser power has a significant impact on the width of
the single track but little effect on the height. As the wire feeding speed increases, the width and height of the single track increase,
especially the height. The faster the scanning speed, the smaller the width of the single track, while the height does not change much.
Then, support vector regression (SVR) and artificial neural network (ANN) regression methods were employed to set up prediction
models. The SVR and ANN regression models perform well in predicting the width, with a smaller root mean square error and a
higher correlation coefficient R?>. Compared with the ANN model, the SVR model performs better both in predicting geometric
characteristics of single track and surface roughness. Multi-layer thin-walled parts were manufactured to verify the accuracy of the

models.
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The metal additive manufacturing (MAM) process is
widely used in equipment manufacturing in aviation,
aerospace and other fields due to its advantages of rapid

61 The material forms of

fabrication speed and low cost'
MAM are mainly metal powder and wire, and the wire-based
MAM is highly concerned due to its low cost, high material
utilization rate and no dust pollution”®. The accuracy and
roughness of the fabricated parts are greatly affected by the
geometric characteristics of the single track of the deposition
layer™. The quality of the single track of the deposition layer
will be poor and even discontinuous, due to the factors such as
inappropriate power, wire feeding speed or scanning speed
ratio, which not only affect the deposition of the current layer,
but also have adverse effects on subsequent deposition layers,
and even make the deposition process unable to continue.
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Therefore, studying the influence of process parameters on
single track deposition of wire-based MAM is of great
significance for obtaining high-quality parts.

Numerous researchers found that the geometric characte-
ristics of single track deposited by wire-based MAM, such as
the width, height and wetting angle, have complicated
relationships with process parameters such as laser power,
wire feeding speed and scanning speed. Ayed et al'” used a
direct energy deposition wire-laser with Precitec coax printer
station to melt a metallic filler wire to build titanium parts,
and the process parameters were optimized, by which wire
feeding speed, travel speed and laser beam power were
defined as predominant process parameters governing the
layer deposition. Liu et al'’ proposed a comprehensive quality
investigation framework based on learning from experimental
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data to obtain high quality microstructural properties of the
parts and to control the desired part geometry. These studies
show that the scanning speed and laser power have the most
significant effects on the width of the single track, and the
wire feeding speed has more obvious effects on the height.

125 studied a novel wire-based plasma transferred

Wang et al
arc-laser hybrid additive manufacture process to fabricate
large-scale titanium parts. In order to improve the deposition
rate and near-net shape, the processing conditions, including
the heat source configuration, wire feeding speed, arc-to-laser
separation distance and travelling speed, were optimized. The
results show that laser power and travelling speed have more
significant influence on the deposition layer of the parts than
other processing parameters.

Based on the research of the single track of deposition
layer, many scholars have investigated the influence of the
processing parameters on the surface roughness of the desired

I proposed a methodology based on a laser

parts. Xiong et al'
vision system to view the surface appearance on the side face
of the parts deposited by gas metal arc welding (GMAW) -
based additive manufacturing, and the influential mechanisms
and evaluation methods of the effect of process parameters,
such as the ratio of wire feeding speed to travel speed and the
wire feeding speed, on the surface roughness were set up. Xia
et al" developed a laser sensor based surface roughness
measuring method for wire arc additive manufacturing
(WAAM) process, and in order to improve the surface
integrity of deposited layers, different machine learning
methods were invested to predict the surface roughness. Their
studies also provided guidance for surface roughness
modeling in multi-pass arc welding and cladding. Wu et al'
presented a data fusion approach to predict surface roughness
in fused deposition modeling processes, which were trained
by the machine learning algorithms such as random forests,
support vector regression (SVR), ridge regression and least
absolute shrinkage and selection operator. Experimental
results show that these predictive models are capable for
predicting the surface roughness of additively manufactured
parts with very high accuracy.

In order to obtain higher surface roughness of parts, using
thinner wire for MAM based on wire feeding is a good choice.
However, the diameter of the wire also affects the selection of
process parameters. Based on the above studies, it can be seen
that the
morphology of single track have complex relationships with

geometric characteristics of the deposition
laser power, wire feeding speed and scanning speed. However,
existing predict models are all obtained for thicker wire, for
example, the diameter of the wire used in Ref.[12—13] and
Ref.[10—11] was 1.2 and 1.5 mm, respectively. Most of the
roughness of the parts prepared by MAM with thicker wire is
above 0.1 mm, which is unable to fabricate parts with lower
roughness. Therefore, it is necessary to study the influence of
process parameters on the geometric characteristics of
deposition morphology under thinner metal wire. Machine
learning methods, such as random forest, SVR and artificial
neural network (ANN), must be used to fit the nonlinear

relationship between input process parameters and output
index variables, so as to establish a prediction model to guide
the selection of process parameters to obtain better surface
roughness.

In this research, a thin wire-based MAM process, with the
wire diameter of only 0.3 mm, was proposed to obtain
manufactured parts with lower surface roughness. Based on a
single track process experiment, a multi-layer thin-wall part
was prepared. Predictive models derived from machine
learning algorithms (SVR and ANN regression) were used to
establish the relationships between the process parameters and
geometric characteristics of single track and surface roughness
of deposited parts, so as to provide a strong basis for choosing
optimal process parameters for high-quality 3D printed parts.

1 Experiment

1.1 Experiment setup

The experimental system for thinner wire-based MAM
process is shown in Fig. 1, including IPG-QW150 fiber laser,
working table, wire feeding system, current preheating
system, industrial camera, etc. During the deposition process,
the whole system was placed in the argon protection
environment box, in which the oxygen content in the
environment box was less than 10 pL/L.

Preliminary experiments have shown that high power is
adverse to the preparation of thin wire-based MAM process.
Therefore, the metal deposition process in this work employed
a laser as the main heating source and a resistance preheating
system as the assisted heating source. The assisted heating
source heated the wire to a half-melt state, making it easy to
adhere to the substrate or each other. The main heating source,
a low-power laser, was used to heat the half-melt wire until it
was totally melted, thereby completing the multi-layer
deposition and the manufacturing of the desired part.

The preliminary experiments found that the angle between
the laser beam and the printing direction has a significant
impact on the single deposition track. If the angle is too small,
the energy is too concentrated and it is easy to produce
spheroidization phenomenon; if the angle is too large, energy
is dispersed and the wire cannot melt. So the angle was set as
about 110°, and the diameter of the laser spot was 0.3 mm.
The substrate and the metal wires were all made of Ti-6Al-4V
alloy with a diameter of 0.3 mm. In the process of wire
deposition additive manufacturing, the working table,
including the X-axis and Y-axis, drove the substrate to
complete the filling motion of wire deposition. After a layer of
deposition was completed, the Z-axis descended by thickness
of one layer, and the filling motion was repeated until the
entire deposition process of the part was completed.

1.2 Geometric characteristics of single track of deposition
layer

The typical single track of the deposition layer is shown in
Fig.2, and its main geometric features can be characterized by
three parameters: the width of the single track D, the height of
the single track H and wetting angle 6. With the assumption
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Fig.1 Experimental system for thinner wire-based MAM process:

(a) vacuum chamber and (b) feeding angle between the laser

beam and the printing direction

Cross-section morphology
obtained by SEM

Fig.2 Geometric characteristics of the single track

that the cross-section of the track is an arc, the wetting angle
can be characterized by the width and height, which is
considered as a dependent parameter and will not be discussed
in this research. The width D and height H of the single track
determine the minimum formed element, which stably control
the shape accuracy of the current layer and the layer in
stacking direction.

In addition, the features of the single track also have a
significant impact on the surface quality of the manufactured
parts. A deposition layer with an ideal width/height ratio is
more conducive to the deposition of the next layer on the basis
of the current layer, which reduces the step effect between two
layers. Therefore, it is necessary to study the complicated

relationships between the geometric characteristics of single
track and process parameters, in order to control the size of
deposition element and to ensure the stable forming.

1.3 Deposition element

The process parameters affecting the single track of the
deposition layer mainly include laser power, wire feeding
speed and scanning speed. The parameters given in the expe-
riments are shown in Table 1, and a total of 27 sets of process
experiments were carried out. The main chemical composition
of the wire material, Ti-6Al-4V, is shown in Table 2.

When the laser power is low (<100 W), the input energy is
insufficient to melt the wire, or it is in a semi-molten state and
cannot be bonded to the substrate tightly. Meanwhile, if the
laser power is too high, that is, the input energy is excessive,
the resulting formed element has a larger width-to-height ratio
and a smaller wetting angle, which not only reduces the
manufacturing efficiency, but also causes excessive remelting
between multi-layers due to heat accumulation. Therefore, the
range of the laser power is 100200 W. When the wire feeding
speed and scanning speed are constant, the basic relationships
between laser power and the width/height of single track of
the deposition layer are shown in Fig.3a. It can be seen that
the laser power has a more significant impact on the width
with a linear positive correlation relationship, and slightly
affects the height with an inverse correlation relationship. This
is mainly because the higher the laser power, the better the
flowability of the wire after melting, resulting in the increase
in the width of the single track and decrease in its height.

Under a certain laser power (175 W) and scanning speed
(120 mm/min), as the wire feeding speed increases, more

Table 1 Parameters of thin wire-based MAM process

Parameter Value

100, 125, 150, 175, 200
60, 120, 180, 240, 300, 360
150, 180, 210, 240, 270, 300

Laser power/W
Wire feeding speed/mm-min’'

Scanning speed/mm-min’'

Table 2 Chemical composition of wire material Ti-6Al-4V (wt%)

Al Si Fe A\ C O N Ti
5.40 0.15 0.30 3.41 11 0.15 0.15 Bal.
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Fig.3 Relationships of laser power (a), wire feeding speed (b) and scanning speed (c) with respect to the width and height of single track of the

deposition layer



Liu Haitao et al. / Rare Metal Materials and Engineering, 2024, 53(11):3026-3034 3029

material enters the melt pool, resulting in an increase in the
width and height of the single track, especially the height, as
shown in Fig.3b.

When the laser power and wire feeding speed are constant,
the faster the scanning speed, the less energy input into the
molten pool and the less material entering the molten pool per
unit time. Therefore, the width of the single track of
deposition layer decreases, and the height changes slightly, as
shown in Fig.3c.

1.4 Roughness of multi-layer parts

On the basis of single track process experiments, multi-
layer stacking experiment was carried out to prepare thin-
walled parts. 50 layers are deposited, with a total length of 30
mm, as shown in Fig.4. Confocal microscope is employed to
measure the roughness R, of a set of 2 mmx2 mm surface in
the middle of thin-walled parts. 6 sets of R, values are adopted
for each surface, the average of all measuring results is used
as the final surface roughness, and the standard deviation is
taken as the error range, as shown in Fig.5—7. Overall, the
higher the laser power, the lower the surface roughness, and
an approximately linear relationship is observed. The
relationship of the wire feeding speed and scanning speed
with respect to surface roughness is the same as that of the
laser power.

1.5 Inter-layer temperature

Inter-layer temperature affects the microstructure and grain
size of metal parts. Higher temperatures promote grain
growth, while lower temperatures result in smaller grain sizes.
Proper control of inter-layer temperature helps to achieve the
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Fig.4 Roughness measurement for multi-layer thin-walled parts

2.0

T
L.5F 1

=
210}
54

0.5f

0.0
100 125 150 175 200

Laser Power/W

Fig.5 Influence of laser power on surface roughness R,

3.0

g
=
%s
0.0
60

120 180 240 300 360

Wire Feeding Speed/mm-min’!

Fig.6 Influence of wire feeding speed on surface roughness R,

2.0 o
—F—
1.5}F C
g
=
1.0F
0.5¢
120 150 180 210 240 270

Scanning Speed/mm-min!

Fig.7 Influence of scanning speed on surface roughness R,

desired microstructure, thereby influencing the mechanical
properties and heat resistance of the material. Fig. 8 shows
scanning electron microscope (SEM) images of the cross-
section of thin-walled part. It can be observed that the cross-
section of the thin-walled component is dense. Due to the
repeated increase and decrease in temperature during the
printing process, the internal grains of the component are
small, resulting in good mechanical performance.

2 Machine Learning Prediction Models

According to the research on the influence of process
parameters on the geometric characteristics of single track and

Fig.8 SEM image of the cross-section of thin-walled part
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surface roughness of the parts deposited by multi-layer
mentioned above, it is very difficult to choose appropriate
process parameters to obtain desired parts with high accuracy
and low surface roughness. Predicting the geometric features
and surface roughness through process parameters is
essentially a regression problem based on machine learning,
so in this work, SVR and ANN methods are used to establish
regression prediction models.
2.1 SVR

It is well known that the aim of support vector machine
is to find a separation hyperplane by maximizing the interval,
so that the majority of sample points are located outside
the two decision boundary, as shown in Fig. 9a. Although
SVR also seeks to maximize the interval, it considers the
points within the decision boundary, so as to make as many
sample points as possible within the interval and thus the
hyperplane is the regression prediction model, which is shown
in Fig.9b.

SVR can be formulated as a convex optimization problem,
which can be expressed by Eq.(1).

1 2 3 s

min o] + € (¢ + &)

st.y,—o'x,~b<e+&, o'x,+b-y <e+l (1)
where C >0 is the trade-off parameter; ¢ and 49 are relaxation
factors; both & and éare lager than 0.
2.2 ANN regression

ANN is widely used to fit nonlinear relationships and it is
mainly composed of input layer (3 nodes in this study,
including laser power, wire feeding speed and scanning
speed), hidden layer (10 layers, Sigmoid function is chosen as

the activation function) and output layer (I node, i.e. the
width/height of single track or the surface roughness), as

a
A
Decision boundary

>
e

Fig.9 Schematics of support vector machine (a) and SVR (b)

shown in Fig. 10. The input layer variables enter the hidden
layer node after linear combination wx+b, and the hidden
layer nodes enter the output layer nodes after the activation of
the Sigmaid function. When neural network is applied to
regression analysis, ReLU function is employed to calculate
the sum of the output as the final value to obtain the predicted
width, height or surface roughness.

2.3 Data for model training

When predicting the width and height of single track,
additional 10 sets of data are added to the previous 17 sets of
process experiments mentioned in Section 1.3, so a total of 27
sets of experimental data under different laser powers, wire
feeding speeds and scanning speeds are used as training and
testing data, as shown in Table 3. When predicting the surface
roughness, 17 sets of data mentioned in Section 1.4 are still
used, as shown in Table 4.

The correlation coefficient R* and root mean square error
(RMSE) are taken as performance indicators of the regression

models, and the calculation formula for R? is as follows:

SSE
2 —
R =1 ST )
where SSE is the sum of squared residuals, representing the
error between the observed values and the predicted values in

the model, and its calculation formula is as follows:
A2
SSE = 3(y, - 5.) @)
where y, is the actual observed value, and y, is the predicted
value. SST is the total sum of squares, representing the total

deviation between the observed values and their mean values
(7, in Eq(4)) which can be calculated as:

N2
SST=3(y, - 7) )
The calculation formula for RMSE is as follows:

S -5)
RMSE = / % (5)

3 Prediction Model Analysis Results

3.1 Regression model for the morphology of single track
Fig. 11 shows the actual value and the regression model
prediction for the width of single track using SVR and ANN,
in which the diagonal lines are the perfect prediction values,
and the blue spots are the observed values, i. e. the
experimental data points. It can be seen that both SVR and

Laser Input layer  Hidden layer Output layer

power /’\ waxrthi

W

Wire feeding
speed ReLU (¥
— — D,HorR,
Scanning
speed
¥

Fig.10 Schematic of ANN model
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Table 3 Training data for the prediction of width and height of

single track

Laser Wire feeding  Scanning speed/ Width/ Height/

power/W speed/mm-min’  mm-min’ pum pm
1 100 120 120 441.464 228.831
2 125 120 120 656.896 172.994
3 150 120 120 792.826 140.552
4 175 120 120 897.362 149.617
5 200 120 120 997.025 129.686
6 175 60 150 895.524 61.268
7 175 120 150 897.299 118.974
8 175 180 150 902.573 149.560
9 175 240 150 920.700 184.688
10 175 300 150 922.361 247.828
11 175 360 150 954.970 291.914
12 175 120 120 890.090 133.346
13 175 120 150 870.198 129.730
14 175 120 180 855.873 129.742
15 175 120 210 846.632 127.928
16 175 120 240 837.869 129.730
17 175 120 270 818.026 129.730
18 150 180 180 800.338 142.561
19 150 240 180 806.877 143.252
20 150 180 150 798.363 139.551
21 125 240 180 676.951 189.457
22 125 180 180 656.324 147.369
23 125 240 210 667.653 186.567
24 100 300 150 587.965 236.369
25 100 180 210 479.862 152.645
26 200 60 210 950.235 65.556
27 200 60 270 955.530 70.232

ANN methods perform well in predicting the width of single
track, and this conclusion can also be seen in Fig. 12, which
shows the errors of the width regression models using the two
methods. The predicting accuracy of SVR is slightly better
than that of ANN, with RMSE=33.50 and R’=0.95, as shown
in Table 5. This indicates that the regression models for the
width of single track have strong correlation and obvious
patterns.

Fig. 13 shows that the regression model ANN has better
accuracy in predicting the height of single track than the SVR,
with RMSE=22.9 and R*=0.83, indicating that ANN model for
the height of single track has low correlation and poor pattern.
The SVR has the same problem, with R*=0.72, as shown in
Table 5.

Similarly, the errors of the two regression models are large
at some experimental data points, as shown in Fig.14, which is
because the height of single track has a significant positive

Table 4 Training data for the prediction of surface roughness

Laser Wire feeding  Scanning speed/ Surface
power/W  speed/mm-min’' mm-min’ roughness/um
1 100 180 120 1.836
2 125 180 120 1.747
3 150 180 120 1.511
4 175 180 120 1.327
5 200 180 120 1.023
6 125 60 150 1.025
7 125 120 150 1.249
8 125 180 150 1.475
9 125 240 150 1.833
10 125 300 150 2.119
11 125 360 150 2.530
12 150 120 120 1.133
13 150 120 150 1.346
14 150 120 180 1.491
15 150 120 210 1.600
16 150 120 240 1.724
17 150 120 270 1.946
1100
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Fig.11 Actual value and the regression model prediction for the
width of single track using SVR (a) and ANN (b)

relationship with the wire feeding speed, while the influence
of laser power and scanning speed is not as significant as that
of the wire feeding speed, which can be seen from Fig.3, so
the SVR and ANN regression models for the height are less
patterned than that for the width.

3.2 Regression model for surface roughness

Fig.15 shows the actual value and regression model predic-
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Fig.12  Error response diagrams of the regression model SVR (a) and ANN (b) for the prediction of width of single track

Table 5 RMSE and R’ of the regression model SVR and ANN in
predicting width and height of single track

RMSE R’
Parameter
SVR ANN SVR ANN
Width 33.50 46.50 0.95 0.90
Height 29.40 22.90 0.72 0.83
300
e Observed value a
Perfect prediction
£250
3 e
2 .
=200
> ..o ® ¢
9 L XJ .
2150 o .
'.s .
=
A~ 100| ° H
50 : : : :
50 100 150 200 250 300
Actual Value/pm

tion for the surface roughness of thin-walled parts using SVR
and ANN. Fig. 16 is the error response diagrams of the two
methods, and the comparison of the RMSE and R’ is shown in
Table 6. It can be seen that the accuracy of the regression
model SVR is much better than that of ANN, with the RMSE=
0.15 and R’=0.86, and the R of regression model ANN is only
0.53, which indicates that the patternity of the

300
e Observed value bl
. 250k Perfect prediction
\:- L] L]
g L]
=200}
> . % °
3 e
5 150F . 4 °
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& 100} |
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Fig.13  Actual value and the regression model prediction for the height of single track using SVR (a) and ANN (b)
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Fig.14  Error response diagrams of the regression model SVR (a) and ANN (b) for the prediction of height of single track

regression model SVR is more obvious than that of ANN.
Overall, SVR and ANN methods perform better in
predicting the width and height of single track than in
predicting surface roughness. The reason for this phenomenon
is that the relationship between the surface roughness of parts
and process parameters is not stable. Other interfering factors,
such as the consistency of the silk material and the degree of

curling, can cause changes in surface roughness, which are
difficult to quantify and can only be eliminated as much as
possible.

4 Production of Thin-Walled Parts

Based on the above regression models, suitable process
parameters are selected, by which multi-layer thin-walled
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Fig.16 Error response diagrams of the regression model SVR (a)

and ANN (b) for the prediction of surface roughness

Table 6 RMSE and R’ of the regression model SVR and ANN in

predicting surface roughness

Model RMSE R?
SVK 0.15 0.86
ANN 0.27 0.53

parts are produced, as shown in Fig.17 and Fig. 18, which eff-
ectively verify the accuracy of the model.

Thicknes$=1"mm
Height=50 mm

Diameter=30 mm
Surface roughness, R =1.6 &5

— —

Fig.17 Multi-layer annular parts prepared under process parameters
of laser power=125 W, wire feeding speed=180 mm/min and

scanning speed=180 mm/min

Thickness=1 mm, Width=200 mm,
Height=50 mm, Surface roughness, R =1.6

Fig.18 Multi-layer annular walled parts under process parameters of
laser power=125 W, wire feeding speed=200 mm/min and

scanning speed=200 mm/min

5 Conclusions

1) The laser power has a significant impact on the width of
single track of deposition layer, showing a linear positive
relationship with width, while it slightly affecting the height
of a single channel, showing an inverse proportional
relationship with height.

2) At a certain laser power and scanning speed, as the wire
feeding speed increases, more material enters the melt pool,
and the width and height of the single track increase,
especially the height.

3) When the laser power and wire feeding speed are
constant, the faster the scanning speed, the smaller the width
of the single track, and the height changes little.

4) Due to the repeated increase and decrease in temperature
during the printing process, the internal grains of the
component are small, resulting in high mechanical
performance.

5) The higher the laser power, the lower the surface
roughness, showing an approximately linear relationship
between the laser power and the surface roughness, and the
relationship between wire feeding speed/scanning speed and
surface roughness is similar.

6) The SVR and ANN regression models predict the width
of the single track more effectively than they predict the
height, with a smaller RMSE and a higher correlation
coefficient R°. Compared with the ANN model, the SVR
model performs Dbetter both in predicting geometric
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characteristics of single track and surface roughness. 9 Wang L, Wang L, Feng Q ef al. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manu-
facture[J], 2024, 238(1-2): 37
10 Ayed A, Bras G, Bernard H et al. Materials Science Forum[J],
2021, 1016: 24
11 Liu S, Brice C, Zhang X. Journal of Manufacturing Pro-
cesses[J], 2022, 79: 803
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