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Abstract: Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L10-FePt 

thin film was investigated, so were the texture formation and evolution mechanism. Reuss, Voigt, and Hill models were used to 

determine the anisotropic elastic modulus of L10-FePt thin film with fiber texture. Then, the elastic strain energies of thin films under 

various stress conditions were calculated. Results reveal that the stress condition has a significant influence on the fiber texture 

evolution. When the L10-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation, the 

formation of {100} fiber texture is promoted. On the contrary, the ordering phase transformation under tensile in-plane strain 

promotes the {001} fiber texture formation.
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Recently, it is noticed that fiber textures in thin films are 
critical for the performance control of functional materials, 
particularly for L10-FePt thin film in perpendicular magnetic 
recording hard disks. Because <001> axis is the most easily 
magnetized axis when L10-FePt thin film has strong {001} 
texture, the thin film can exhibit excellent perpendicular 
magnetic anisotropy to meet the application requirements[1]. 
As a result, the research on fiber texture of L10-FePt thin film 
has attracted extensive attention. Many approaches have been 
proposed to produce L10-FePt thin films with strong {001} 
fiber texture, including alternating deposition of Fe and Pt, 
utilization of single crystal substrate, addition of seed layer[2–5], 
magnetic field annealing+quick annealing[6–7], and film 
thickness adjustment[8–10]. How to enhance the {001} fiber 
texture in L10-FePt thin films has been the focus in most 
researches, but the texture formation, evolution mechanism, 
and texture control are rarely studied.

In the thin films, the anisotropy of strain energy and surface 
energy is the primary factor inducing the preferred growth of 
grains and the formation of fiber texture[11–12]. The elastic strain 
energy within thin films is intricately interconnected with the 
stress-strain and it is susceptible to modulation by external 

factors. These influences primarily originate from the residual 
strain in as-deposited thin films, the thermal strain resulting 
from disparities in thermal expansion coefficients between the 
film and substrate materials, and the strain induced by 
volumetric contraction of thin films due to defect annihilation 
and grain growth[13]. In addition to the aforementioned strains, 
the strain caused by disorder-to-order phase transition exists in 
FePt thin films. As-deposited FePt thin film has disordered 
face-centered cubic (fcc) structure, which is subjected to 
ordering phase transformation after annealing, thus forming 
ordered L10 phase with tetragonal structure. During the 
ordering phase transformation, the structure of FePt thin film 
changes, which leads to change in lattice constant so as to 
generate transformation strain. The stress state of FePt film 
strongly affects the grain growth orientation and influences 
the formation of fiber texture.

Hence, the formation and evolution mechanisms of fiber 
texture in L10-FePt thin films were investigated in this 
research. The anisotropic strain energy in L10-FePt thin films 
was calculated, and the influence of the changes in external 
stress on their fiber textures was analyzed, providing an 
effective reference for the preparation of L10-FePt thin films 
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with strong {001} fiber textures.

11  Calculation  Calculation

1.1  Anisotropic elastic modulus

Elastic modulus is anisotropic due to different interatomic 
binding forces along different crystal orientations[14]. The 
anisotropic strain energy in L10-FePt thin films could be 
accurately calculated through the elastic constant and elastic 
modulus of different crystal planes in the films.

Reuss, Voigt, and Hill models were employed to calculate 
the macro-elastic constant of polycrystals. Reuss model is a 
iso-stress model after averaging the elastic flexibility 
coefficients of all grains along different orientations. As for 
Voigt model (iso-strain model), the elastic rigidity coefficients 
of all grains along different orientations were averaged. The 
elastic constants calculated by these two models were the 
upper and lower limits of actual value. Hill model expresses 
the elastic constant of a material by taking the arithmetic  
mean of the results calculated by the abovementioned 
models[15]. Orientation distribution function (ODF) describes 
the three-dimensional spatial distribution of textures, and       
it is mainly applied to analyze the textures of various 
polycrystalline materials. The elastic constant of anisotropic 
materials deviates from that of isotropic materials to a      
great extent. Therefore, ODF could be used to calculate       
the elastic constant, denote the relationship between       
texture coefficient and elastic constant, quantitatively analyze 

the change in elastic constant with the texture, and further 
clarify the stress-texture relationship in FePt thin films. As 
shown in Fig. 1, the sample coordinate system Pi and crystal 
coordinate system Ki of polycrystalline film could be defined 
to describe the crystal orientations in polycrystals. As for the 
crystal coordinate system, three mutually perpendicular 
crystal orientations were chosen according to the crystal 
symmetry. Generally, the crystal coordinate system does not 
overlap with the sample coordinate system, and the included 
angle between specific axes could be expressed by Euler 
angles (φ1, ϕ, φ2).

During calculation, the elastic constant should to be 
transformed from the crystal coordinate system to the sample 
coordinate system via a transformation matrix, as follows:

C'ijkl = a imajnakoalpCmnop (1)

S'ijkl = a imajnakoalpSmnop (2)

where C'ijkl and S'ijkl represent the elastic rigidity coefficient and 
elastic flexibility coefficient in the sample coordinate system, 
respectively; Cmnop and Smnop stand for the monocrystal elastic 
rigidity coefficient and monocrystal elastic flexibility 
coefficient in the crystal coordinate system, respectively; a 
represents transformation matrix from the sample coordinate 
system to the crystal coordinate system; subscripts i, j, k, l,   
m, n, o, and p represent different matrices. The transforma-
tion matrix could be expressed by Euler angles to facilitate  
the integration of Euler space in statistical calculation, as 
follows:

a ij =

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úcos φ1 cos φ2 - sin φ1 sin φ2 cos ϕ sin φ1 cos φ2 + cos φ1 sin φ2 cos ϕ sin φ2 sin ϕ

-cos φ1 sin φ2 - sin φ1 cos φ2 cos ϕ -sin φ1 sin φ2 + cos φ1 cos φ2 cos ϕ cos φ2 sin ϕ

sin φ1 sin ϕ -cos φ1 sin ϕ cos ϕ

(3)

Since the L10-FePt thin film has a tetragonal structure with 
lattice constant a=b≠c, the transformation matrix aij should be 
multiplied by coefficient matrix T:

T =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú1 0 0
0 1 0
0 0 c/a

(4)

1.1.1　Reuss model
In Reuss model, the average macro-elastic flexibility 

coefficient S'ijkl of polycrystal materials should be the 
probability-weighted average of monocrystal elastic flexibility 

coefficients (Smnop) of all grains based on their spatial 

orientation distribution[16]. The macro-elastic constant could be 

solved through the average value of elastic constants of all 

grains in their testing orientations, as expressed by Eq.(5), as 

follows:

-
S

R

ijkl =
1

8π2 ∫
Ω

2π

S'ijkl ⋅ f ( g )dg

=
1

8π2 ∫
0

2π∫
0

π ∫
0

2π

a imajnakoalpSmnop f ( g ) sin ϕdϕdφ1dφ2 (5)

where f(g) denotes the normalized ODF, g represents the 

orientation, and Ω represents the orientation space of grains. 

The rigidity coefficient in Reuss model could be obtained by 

finding the inverse matrix of flexibility matrix, as expressed 

by Eq.(6), as follows:
-
C

R

ijkl = [ -S R

ijkl ] -1

(6)

If the material possesses an ideal fiber texture, the 

abovementioned equation could be simplified, as follows:

-
S

R

ijkl

hkl

=
1

2π ∫
0

2π

S'ijkl f ( g )dφ1 (7)

1.1.2　Voigt model

Similar to Reuss model, the average macro-elastic rigidity 

coefficient could be obtained by solving the probability-

P3

K2

P2

K1P1

K3

φ1

ϕ

Fig.1  Schematic diagram of crystal and sample coordinate system of 

polycrystal
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weighted average of monocrystal elastic rigidity coefficients 
of all grains in the crystal coordinate system according to their 
spatial orientation distribution. If the orientation correlations 
among adjacent grains, grain shape, and intergranular 
interaction were ignored, the elastic constant could be 
expressed by Eq.(8), as follows:

-
C

V

ijkl =
1

8π2 ∫
Ω

2π

C'ijkl ⋅ f ( g )dg

=
1

8π2 ∫
0

2π∫
0

π ∫
0

2π

a imajnakoalpCmnop f ( g ) sin ϕdϕdφ1dφ2 (8)

When the material possesses ideal fiber texture, one or two 
parameters among the three Euler angles (φ1, ϕ, φ2) can be 
fixed. In this case, Eq. (8) could be simplified into Eq. (9), as 
follows:

-
C

V

ijkl

hkl

=
1

2π ∫
0

2π

C'ijkl f ( g )dφ1 (9)

Then, the transformation matrix aij was substituted into    
Eq.(7) and Eq.(9) to solve the elastic flexibility coefficient and 
elastic rigidity coefficient of this material with ideal fiber 
texture under corresponding coordinate systems, respectively.
1.1.3　Hill model

Based on the results of Reuss and Voigt models, the 
arithmetic mean of macro-flexibility coefficient and rigidity 
coefficient of the material could be solved as Hill approximate 
value, as follows:

-
S

H

ijkl =
1
2 { }-

S
R

ijkl + [ ]-
C

V

ijkl

-1

-
C

H

ijkl =
1
2 { }-

C
R

ijkl + [ ]-
S

V

ijkl

-1
(10)

The expression of Hooke􀆳s law is as follows:
σ ij = C ijklεkl

ε ij = S ijklσkl

(11)

where Cijkl is the elastic rigidity coefficient, presenting the 
relationship between two second-order tensors (stress σ and 
strain ε) generated under stress conditions; Sijkl stands for the 
elastic flexibility coefficient. These two matrices were 
mutually reversible to some extent. Thus, Sijkl= [Cijkl]

-1 can be 
obtained.

After the subscripts of coefficients were simplified, the 
abovementioned Hooke􀆳s law could be expressed as σq = Cqrεr 
and εq = Sqrσr (q, r=1, 2, 3, 4, 5, 6), where the monocrystal 
elastic rigidity coefficient is assumed as Cqr , and the monocry-
stal elastic flexibility coefficient is assumed as Sqr . Then, C′qr 
corresponding to any orientation (φ1, ϕ, and φ2) could be 
obtained through the transformational relation of tensors. 
Subsequently, the double-subscript matrix components of the 
rigidity coefficient were replaced by the four-subscript tensor 
components and then substituted into the coordination 

conversion formula of tensors, as follows:
C ′qr = C ′ijkl = a imajnakoalpCmnop (12)

S ′qr = S ′ijkl = a imajnakoalpSmnop (13)

The elastic constants of monocrystal L10-FePt materials are 
listed in Table 1[17]. On this basis, the elastic constants of 
isotropic L10-FePt materials under Reuss, Voigt, and Hill 
models could be solved, and the results are shown in Table 2.

When a fiber structure is generated in the L10-FePt thin 
film, the Miller index (h, k, l) of crystal face could be 
determined to express three Euler angles (φ1, ϕ, φ2), as follows:

ϕ = arccos
l

h2 + k 2 + l2

φ1 = arcsin ( w

u2 + v2 + w2
∙ h2 + k 2 + l2

h2 + k 2 ) (14)

φ2 = arccos
k

h2 + k 2

If the L10-FePt thin film has the ideal fiber textures, its 
Miller index can be substituted into Eq. (7, 9 – 10), and the 
results are shown in Table 3.

When the thin film material is isotropic, its biaxial elastic 
modulus is correlated with Young 􀆳 s modulus and Poisson 􀆳 s 
ratio. The effect of anisotropy must be considered when fiber 
textures exist in the thin film, i. e., grains growing along a 
specific orientation or on a specific crystal face in grains are 
parallel to the surface of the thin film. Under the sample 
coordinate system, the biaxial elastic modulus M of the thin 
film could be expressed by Eq.(15)[18], as follows:

M = C11 + C12 -
2C 2

13

C33

(15)

According to Eq. (13), Eq. (15) could be transformed into  
Eq.(16), as follows:

M V = [C F
11 ] + [C F

12 ] -
2[ ]C F

13

2

[ ]C F
33

(16)

[ ]C F
11 + [ ]C F

12 = C11 + C12 - C T
0 Γ

T
hkl

                              +2Z ( )C T
1 Z + 2ΔC12 + 2ΔC66 + 2C16 Z1

[ ]C F
13 = C13 + C T

0 Γ
T
hkl + Z { }C T

1 ( )1 - 2Z - ΔC12 - 2C16 Z1

[ ]C F
33 = C33 - 2C T

0 Γ
T
hkl - 4Z { }C T

1 ( )1 - Z + ΔC12 + 2ΔC66

                +4C16 Z1

C T
0 = C11 - C12 - 2C66,   C

T
1 = ΔC11 - 2ΔC12 - 4ΔC66

ΔC11 = C33 - C11,   ΔC12 = C13 - C12,   ΔC66 = C44 - C66

Z =
h2 + k 2

2[ ]h2 + k 2 + ( )la/c
2 2

,   Z1 =
hk ( )h2 - k 2

[ ]h2 + k 2 + ( )la/c
2 2

,

Γ T
hkl =

h2k 2 + ( )h2 + k 2 ( )la/c
2

[ ]h2 + k 2 + ( )la/c
2 2

(17)

According to the abovementioned formula, the elastic 

Table 1  Elastic constants of monocrystal L10-FePt thin film

Cqr/GPa

C11

261

C12

169

C13

151

C33

299

C44

103

C66

133

Sqr/MPa

S11

0.007 237

S12

-0.003 630

S13

-0.001 820

S33

0.005 183

S44

0.009 709

S66

0.007 519

339



Wang Xuanli et al. / Rare Metal Materials and Engineering, 2025, 54(2):337-342

modulus of L10-FePt thin film with ideal fiber texture can be 

obtained, and the results are shown in Table 4. It can be seen 

that L10-FePt thin film presents evidently different elastic 

properties under different textures, indicating that the elastic 

modulus of L10-FePt thin film is significantly impacted by the 

texture.

1.2  Elastic strain energy of L10-FePt thin films 

L10-FePt thin film is impacted by external stress and 

transformation stress during growth, and the changes in stress 

state influence the strain energy in the thin film and finally 

lead to the formation of various fiber texture. Therefore, the 

strain energy of L10-FePt films under different stress states 

and the relationship between stress and texture are crucial to 

clarify the mechanisms of texture formation and evolution.

The thickness of L10-FePt thin film is much smaller than 

the substrate thickness, and the external stress is completely 

reflected by the binding force of the substrate against the    
thin film. Thus, the thin film is subjected to equivalent   
biaxial stress and the in-plane biaxial strain is generated. In 
this case, the in-plane strain of L10-FePt thin film is assumed 
to be a variable value from compressive strain to tensile  
strain, and the strain energy of L10-FePt thin film is discussed 
on this basis.

For polycrystalline films with fiber textures, the orientation 
of out-plane grains is consistent, but the in-plane grains show 
randomly distributed orientations. Under the in-plane 
equivalent biaxial stress, all in-plane grains generate the same 
strain. For simplification, all grains in the L10-FePt thin film 
are regarded as isometric crystals, and the in-plane strain can 
be denoted by the circumcircle radius of the crystal face, as 
shown in Fig. 2a. In addition, the [001] crystal orientation is 
designated as the c axis after ordering phase transformation. 
Fig. 2b shows the crystal coordinate system of L10-FePt thin 
film. In Fig.2c, the grains along all orientations within the L10-
FePt thin film before ordering phase transformation are 
considered as the circumcircle with radius R and those after 
ordering phase transformation are regarded as the circumcircle 
with radius R′ . In this case, the strain generated by external 
stress and that by ordering phase transformation are 
effectively associated for accurate calculation of the strain 

Table 2  Elastic constants of isotropic L10-FePt thin film (GPa)

Model

Voigt

Reuss

Hill

C11

249.0

247.0

248.4

C12

169.0

165.0

167.0

C13

161.0

156.0

158.5

C33

226.0

219.0

222.5

C44

65.0

67.0

66.0

C66

68.0

66.0

67.0

Table 3  Elastic constants of L10-FePt thin films with (hkl) fiber 

textures (GPa)

(hkl)

(001)

(110)

(111)

(100)

(011)

Model

Voigt

Reuss

Hill

Voigt

Reuss

Hill

Voigt

Reuss

Hill

Voigt

Reuss

Hill

Voigt

Reuss

Hill

C11

254.6

252.0

253.3

255.8

254.3

255.5

263.6

261.4

262.5

260.6

257.7

259.2

257.1

255.4

256.3

C12

175.4

174.8

175.1

194.3

186.3

190.6

208.3

203.5

205.9

170.4

167.3

168.6

199.3

195.6

197.5

C13

152.8

150.6

151.7

136.2

132.2

134.2

111.1

107.4

109.5

160.0

158.6

159.3

126.9

123.2

124.6

C33

297.0

305.0

298.0

318.5

314.1

316.3

374.5

370.1

372.3

261.0

257.5

259.3

342.9

339.7

341.3

C44

89.1

86.5

87.8

92.5

90.4

91.5

76.8

74.8

75.8

74.2

72.6

73.3

75.1

73.3

74.2

C66

72.9

69.8

71.5

69.3

65.2

67.3

66.5

63.8

65.3

70.9

67.4

69.2

67.0

63.4

65.2

Table 4  Elastic properties of L10-FePt thin films with (hkl) fiber 

textures

Texture

(001)

(110)

(111)

(100)

(011)

Young􀆳s
modulus, E/GPa

241.43

253.87

216.83

201.48

210.89

Biaxial elastic

modulus, M/GPa

277.48

333.17

406.05

234.83

362.23

Poisson􀆳s ratio, ν

0.355

0.373

0.411

0.357

0.403

R

a [001]

[100]

[010]

c

a

a

fcc L10 ordered

a

a

2a/2
a′

a′{001} (001)

2a′/2

(010)

c

a′

c2+a′2 /2

b

c

{111}

6
3

a

{111}

2 (a′2+c2 )

2a′2+4c2

{110}

3a/2

(101)

2a′2+c2 /2

(110)

2a′2+c2 /2

Fig.2  Schematic diagrams of in-plane strains of thin film: (a) unit 

volume circle; (b) crystal coordinate system of L10-FePt thin 

film; (c) change in radius of unit volume circle before and after 

ordering phase transformation of crystal faces along different 

orientations
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energy of the L10-FePt thin film.
The strain energies of the L10-FePt thin film under ideal 

textures of {001}, {010}, {111}, {101}, and {110} are 
calculated. According to Fig.2c, in the case of ordering phase 
transformation, different transformation strains (εt) are 
generated on the crystal faces of different orientations, which 
can be expressed by the radius difference between the unit 
volume circle before and after ordering phase transformation, 
as follows:

ε t =
R' - R

R
(18)

The in-plane strain generated by external stress in the thin 
film before ordering phase transformation can be denoted by 
the coefficient k. The range of in-plane strain generated by the 
external environment to the L10-FePt thin film is assumed to 
be ( − 0.03, 0.03), and the thin film suffers ordering phase 
transformation under different external stresses. Therefore, the 
elastic strain energy of L10-FePt thin films with different fiber 
textures can be denoted by Eq.(19), as follows:

Whkl = Mhkl

é

ë

ê
êê
êR' - R ( )1 + k

R ( )1 + k

ù

û

ú
úú
ú

2

(19)

22  Results and Discussion  Results and Discussion

According to the anisotropic elastic modulus of L10-FePt 
thin film, the elastic strain energy of L10-FePt film under the 
combined action of external stress and phase change stress is 
obtained. The results are shown in Fig. 3. The calculation 
results show that the strain energies of L10-FePt thin films 
with different fiber textures are substantially influenced by the 
in-plane strain state.

When the ordering phase transformation occurs in the L10-
FePt thin film, the in-plane compressive strain of 0 – 0.005 
exists, the types of fiber textures vary less obviously based on 
the elastic strain energy, and the surface energy of the thin 
film is the main driving force for texture formation. When the 
in-plane compressive strain further increases from 0.005, the 
difference between fiber textures becomes obvious, the {100} 
plane in the thin film possesses the minimum strain energy, 
and the {001} plane has the maximum strain energy. With the 
further increase in the in-plane compressive strain, an 

increasingly evident difference of strain energy can be 
observed between {100} and {001} planes. The formation of 
{100} fiber textures in the L10-FePt thin film is facilitated by 
minimizing the strain energy when the thin film is subjected to 
ordering phase transformation under a large in-plane 
compressive strain. However, when it is at the in-plane tensile 
strain state, the {001} crystal face possesses the minimum 
strain energy. The difference of this crystal face from other 
crystal faces is more obvious with the increase in the in-plane 
tensile strain, thus promoting the formation of {001} fiber 
textures in the L10-FePt thin film.

Hence, in order to obtain strong {001} fiber textures, L10-
FePt thin films should be adjusted to reach the in-plane tensile 
stress state before the ordering phase transformation. 
Moreover, the larger the in-plane tensile strain, the better the 
formation of {001} fiber texture.

33  Conclusions  Conclusions

1) When L10-FePt thin film is at in-plane compressive 
stress state during ordering phase transformation, the 
formation of {100} fiber textures is promoted.

2) {001} fiber textures tend to appear when L10-FePt thin 
film is at tensile stress state.

3) The larger the in-plane tensile strain, the better the 
formation of {001} fiber texture, and the stronger the intensity 
of {001} fiber texture.
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L10-FePt薄膜应力与织构的关系

王炫力 1，李 玮 2

(1. 内蒙古科技大学  材料科学与工程学院，内蒙古  包头  014010)

(2. 内蒙古科技大学  分析测试中心，内蒙古  包头  014010)

摘 要：探讨了织构的类型对超高密度垂直磁记录介质材料L10-FePt薄膜磁性能的影响及织构的形成和演化机制。通过Reuss、Voigt和

Hill模型确定了具有纤维织构的L10-FePt薄膜的各向异性弹性模量，然后计算了薄膜在不同应力条件下的弹性应变能。结果表明，应力

条件对纤维织构演变具有显著影响。L10-FePt薄膜在有序转变之前受到平面压缩应力能够促进{100}纤维织构的形成，而平面拉伸应变

下的有序转变促进了{001}纤维织构的形成。
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