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Abstract: Impact of texture type on the magnetic properties of ultrahigh density perpendicular magnetic recording media L1 -FePt

thin film was investigated, so were the texture formation and evolution mechanism. Reuss, Voigt, and Hill models were used to
determine the anisotropic elastic modulus of L1 -FePt thin film with fiber texture. Then, the elastic strain energies of thin films under

various stress conditions were calculated. Results reveal that the stress condition has a significant influence on the fiber texture

evolution. When the L1-FePt thin film is subjected to compressive in-plane strain prior to ordering phase transformation, the

formation of {100} fiber texture is promoted. On the contrary, the ordering phase transformation under tensile in-plane strain

promotes the {001} fiber texture formation.
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Recently, it is noticed that fiber textures in thin films are
critical for the performance control of functional materials,
particularly for L1,-FePt thin film in perpendicular magnetic
recording hard disks. Because <001> axis is the most easily
magnetized axis when L1-FePt thin film has strong {001}
texture, the thin film can exhibit excellent perpendicular
magnetic anisotropy to meet the application requirements!’.
As a result, the research on fiber texture of L1,-FePt thin film
has attracted extensive attention. Many approaches have been
proposed to produce L1,-FePt thin films with strong {001}
fiber texture, including alternating deposition of Fe and Pt,

utilization of single crystal substrate, addition of seed layer™ ™,

magnetic field annealing+quick annealing®”, and film
thickness adjustment®'”. How to enhance the {001} fiber
texture in L1-FePt thin films has been the focus in most
researches, but the texture formation, evolution mechanism,
and texture control are rarely studied.

In the thin films, the anisotropy of strain energy and surface
energy is the primary factor inducing the preferred growth of
grains and the formation of fiber texture’''?. The elastic strain
energy within thin films is intricately interconnected with the

stress-strain and it is susceptible to modulation by external
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factors. These influences primarily originate from the residual
strain in as-deposited thin films, the thermal strain resulting
from disparities in thermal expansion coefficients between the
film and substrate materials, and the strain induced by
volumetric contraction of thin films due to defect annihilation
and grain growth™. In addition to the aforementioned strains,
the strain caused by disorder-to-order phase transition exists in
FePt thin films. As-deposited FePt thin film has disordered
face-centered cubic (fcc) structure, which is subjected to
ordering phase transformation after annealing, thus forming
ordered L1, phase with tetragonal structure. During the
ordering phase transformation, the structure of FePt thin film
changes, which leads to change in lattice constant so as to
generate transformation strain. The stress state of FePt film
strongly affects the grain growth orientation and influences
the formation of fiber texture.

Hence, the formation and evolution mechanisms of fiber
texture in L1-FePt thin films were investigated in this
research. The anisotropic strain energy in L1,-FePt thin films
was calculated, and the influence of the changes in external
stress on their fiber textures was analyzed, providing an
effective reference for the preparation of L1,-FePt thin films
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with strong {001} fiber textures.
1 Calculation

1.1 Anisotropic elastic modulus

Elastic modulus is anisotropic due to different interatomic
binding forces along different crystal orientations!. The
anisotropic strain energy in LI ,-FePt thin films could be
accurately calculated through the elastic constant and elastic
modulus of different crystal planes in the films.

Reuss, Voigt, and Hill models were employed to calculate
the macro-elastic constant of polycrystals. Reuss model is a
iso-stress model after averaging the elastic flexibility
coefficients of all grains along different orientations. As for
Voigt model (iso-strain model), the elastic rigidity coefficients
of all grains along different orientations were averaged. The
elastic constants calculated by these two models were the
upper and lower limits of actual value. Hill model expresses
the elastic constant of a material by taking the arithmetic
mean of the results calculated by the abovementioned
models"”. Orientation distribution function (ODF) describes
the three-dimensional spatial distribution of textures, and
it is mainly applied to analyze the textures of various
polycrystalline materials. The elastic constant of anisotropic
materials deviates from that of isotropic materials to a
great extent. Therefore, ODF could be used to calculate
the elastic

constant, denote the relationship between

the change in elastic constant with the texture, and further
clarify the stress-texture relationship in FePt thin films. As
shown in Fig. 1, the sample coordinate system P, and crystal
coordinate system K, of polycrystalline film could be defined
to describe the crystal orientations in polycrystals. As for the
crystal coordinate system, three mutually perpendicular
crystal orientations were chosen according to the crystal
symmetry. Generally, the crystal coordinate system does not
overlap with the sample coordinate system, and the included
angle between specific axes could be expressed by Euler
angles (¢, ¢, ).

During calculation, the elastic constant should to be
transformed from the crystal coordinate system to the sample
coordinate system via a transformation matrix, as follows:

Cii = Ain@33810a3,C iy (1

Si}kl = A i A1y Simop 2
where Cjy, and Sjj, represent the elastic rigidity coefficient and
elastic flexibility coefficient in the sample coordinate system,

respectively; C, . -and S, stand for the monocrystal elastic
rigidity coefficient and monocrystal elastic flexibility

coefficient in the crystal coordinate system, respectively; a
represents transformation matrix from the sample coordinate
system to the crystal coordinate system; subscripts i, j, k, 1,
m, n, o, and p represent different matrices. The transforma-
tion matrix could be expressed by Euler angles to facilitate
the integration of Euler space in statistical calculation, as

texture coefficient and elastic constant, quantitatively analyze follows:
COS @, COS @, — sing, singp, cos¢  sing, cos g, + cos @, sing, cos¢  sing, sing
a; =|—cos¢p, sing, — sing, cosp,cos¢ —sing, sing, + cosp, cos P, cos$ cos g, sing 3)
sin g, sin ¢ —cos @, sing cos ¢

Since the L1,-FePt thin film has a tetragonal structure with
lattice constant a=b#c, the transformation matrix a; should be
multiplied by coefficient matrix T:

1 0 0
T=(0 1 0 4)
0 0 cla

1.1.1 Reuss model

In Reuss model, the average macro-elastic flexibility
coefficient Sy, of polycrystal materials should be the
probability-weighted average of monocrystal elastic flexibility
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Fig.1 Schematic diagram of crystal and sample coordinate system of

polycrystal

) of all grains based on their spatial
[16
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orientation distribution”®. The macro-elastic constant could be
solved through the average value of elastic constants of all
grains in their testing orientations, as expressed by Eq.(5), as

follows:
N 2n

_ 1 ,
S = Qfsijkl -f(g)dg

2
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0

0
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where f{g) denotes the normalized ODF, g represents the
orientation, and @ represents the orientation space of grains.
The rigidity coefficient in Reuss model could be obtained by
finding the inverse matrix of flexibility matrix, as expressed
by Eq.(6), as follows:

—R —r 7!

Cijkl = [Sijkl] (6)

If the material possesses an ideal fiber texture, the
abovementioned equation could be simplified, as follows:

2n
_ Ikl 1
(Sh) =2 [ (2)do, ™
0

1.1.2 Voigt model

Similar to Reuss model, the average macro-elastic rigidity
coefficient could be obtained by solving the probability-
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weighted average of monocrystal elastic rigidity coefficients
of all grains in the crystal coordinate system according to their
spatial orientation distribution. If the orientation correlations
among adjacent grains, grain shape, and intergranular
interaction were ignored, the elastic constant could be
expressed by Eq.(8), as follows:

2n

=V 1 , .

Ciu = @i’cijkl - f(g)dg
2n 7w 2n

J || 500,04, Coy £ (2)sin b0, 00, (®)

000

-
8n?

When the material possesses ideal fiber texture, one or two
parameters among the three Euler angles (¢,, ¢, ¢,) can be
fixed. In this case, Eq.(8) could be simplified into Eq.(9), as
follows:

2n
_ hkl 1
(Ch) =5 [Ciur (2)do, ©
0

Then, the transformation matrix a; was substituted into
Eq.(7) and Eq.(9) to solve the elastic flexibility coefficient and
elastic rigidity coefficient of this material with ideal fiber
texture under corresponding coordinate systems, respectively.
1.1.3 Hill model

Based on the results of Reuss and Voigt models, the
arithmetic mean of macro-flexibility coefficient and rigidity
coefficient of the material could be solved as Hill approximate
value, as follows:

_ 1 (= v 7!
Sil;klzz{sgkl+|:ci\]‘/kl:| }

—H 1 |=r —v 1! (10)
Cijkl :i{cijk] +|:Sijkl] }

The expression of Hooke’s law is as follows:

0; = Cijklgkl 11
& = Sijklo-kl b

where C,,, is the elastic rigidity coefficient, presenting the
relationship between two second-order tensors (stress o and
strain ¢) generated under stress conditions; Sy, stands for the
elastic flexibility coefficient. These two matrices were
mutually reversible to some extent. Thus, S, =[C,] ' can be
obtained.

After the subscripts of coefficients were simplified, the
abovementioned Hooke’s law could be expressed as o, = C, &,
and ¢, = §,0. (¢, =1, 2, 3, 4, 5, 6), where the monocrystal
elastic rigidity coefficient is assumed as C,,, and the monocry-
stal elastic flexibility coefficient is assumed as S, . Then, C,
corresponding to any orientation (¢,, ¢, and ¢,) could be
obtained through the transformational relation of tensors.
Subsequently, the double-subscript matrix components of the
rigidity coefficient were replaced by the four-subscript tensor
components and then substituted into the coordination

conversion formula of tensors, as follows:
C.;r = Ci;k] = aimajnakoalpcmnop (12)
Sq'r = Sém = aimajnakoalpsmnop (13)
The elastic constants of monocrystal L1 -FePt materials are
listed in Table 1", On this basis, the elastic constants of
isotropic L1,-FePt materials under Reuss, Voigt, and Hill
models could be solved, and the results are shown in Table 2.
When a fiber structure is generated in the L1-FePt thin
film, the Miller index (h, k, I) of crystal face could be

determined to express three Euler angles (¢,, ¢, ¢,), as follows:
1
,/hz + k2 + 12
w PR
[+ 2 + w2 P+ kK

k-
Jrve

If the L1,-FePt thin film has the ideal fiber textures, its
Miller index can be substituted into Eq. (7, 9—10), and the
results are shown in Table 3.

¢ = arccos

¢, = arcsin (14)

@, = arccos

When the thin film material is isotropic, its biaxial elastic
modulus is correlated with Young’s modulus and Poisson’s
ratio. The effect of anisotropy must be considered when fiber
textures exist in the thin film, i.e., grains growing along a
specific orientation or on a specific crystal face in grains are
parallel to the surface of the thin film. Under the sample
coordinate system, the biaxial elastic modulus M of the thin
film could be expressed by Eq.(15)"", as follows:
2C%

. (15)

According to Eq.(13), Eq.(15) could be transformed into
Eq.(16), as follows:

M=C,+Cy,-

F 2
MY =[ci]+[ch]- 2[[2]] (16)
[C1F1:|+|:C1F2]= C,+Cp,- CoTFtht

+2Z(CTZ+2AC,, + 2AC )+ 2C 1 Z,
[Ch]=Cu+Ciry+Z{Cl(1-2Z)- AC,|-2C\Z,
[CL]=Cy 2001, —4Z{CI(1-Z)+ AC,, + 2AC}
+4C\(Z,

CoT =C), —C,,~2C, CIT =AC,, —2AC,,— 4AC

(17)
AC,,=Cy;-Cy, AC,=C;3-Cp,, AC,=Cyy~ Cy

W+ k2 hk(h* - k?
zZ= . 7= ( )2 -
2[h2+k2+(1a/c) ] [h2+k2+(za/c) ]
L R+ (k) (lale)’
Ly = 12
[h2+kz+(la/c) ]

According to the abovementioned formula, the elastic

Table 1 Elastic constants of monocrystal L1,-FePt thin film

C,/GPa S,/MPa
Cll C12 C13 C33 C44 C()6 Sll S12 S13 S33 S44 Sé()
261 169 151 299 103 133 0.007237  -0.003630  -0.001820  0.005183  0.009709  0.007 519
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Table 2 Elastic constants of isotropic L1 -FePt thin film (GPa)

Model  C, c c, . ¢, G,
Voigt 2490  169.0 1610 2260 650  68.0
Reuss 2470 1650 1560 2190 670  66.0

Hill 2484 1670 1585 2225 660 670

Table 3 Elastic constants of L1 -FePt thin films with (hkl) fiber

textures (GPa)

(hkl) Model C, C, C, Cy C, Cg
Voigt 2546 1754 1528 2970 89.1 729
(001) Reuss 2520 1748 150.6 3050 865 69.8
Hill 2533 1751 1517 2980 878 715
Voigt  255.8 1943 1362 3185 925 693
(110) Reuss 2543 1863 1322 3141 904 652
Hill 2555 190.6 1342 3163 915 673
Voigt  263.6 2083 111.1 3745 768 66.5
(111)  Reuss 2614 2035 1074 370.1 748 63.8
Hill 2625 2059 1095 3723 758 653
Voigt  260.6 170.4 1600 261.0 742 709
(100) Reuss 2577 1673 1586 2575 726 67.4
Hill 2592 1686 1593 2593 733 692
Voigt  257.1 1993 1269 3429 751 67.0
(011) Reuss 2554 1956 1232 3397 733 63.4
Hill 2563 1975 1246 3413 742 652

reflected by the binding force of the substrate against the
thin film. Thus, the thin film is subjected to equivalent
biaxial stress and the in-plane biaxial strain is generated. In
this case, the in-plane strain of L1,-FePt thin film is assumed
to be a variable value from compressive strain to tensile
strain, and the strain energy of L1,-FePt thin film is discussed
on this basis.

For polycrystalline films with fiber textures, the orientation
of out-plane grains is consistent, but the in-plane grains show
randomly distributed orientations. Under the
equivalent biaxial stress, all in-plane grains generate the same
strain. For simplification, all grains in the L1-FePt thin film
are regarded as isometric crystals, and the in-plane strain can
be denoted by the circumcircle radius of the crystal face, as

in-plane

shown in Fig.2a. In addition, the [001] crystal orientation is
designated as the ¢ axis after ordering phase transformation.
Fig.2b shows the crystal coordinate system of L1-FePt thin
film. In Fig.2c, the grains along all orientations within the L1 -
FePt thin film before ordering phase transformation are
considered as the circumcircle with radius R and those after
ordering phase transformation are regarded as the circumcircle
with radius R'. In this case, the strain generated by external
stress and that by ordering phase transformation are

effectively associated for accurate calculation of the strain

a

[001]

modulus of L1-FePt thin film with ideal fiber texture can be
obtained, and the results are shown in Table 4. It can be seen
that L1,-FePt thin film presents evidently different elastic
properties under different textures, indicating that the elastic
modulus of L1 -FePt thin film is significantly impacted by the
texture.

1.2 Elastic strain energy of L1,-FePt thin films

L1,-FePt thin film is impacted by external stress and
transformation stress during growth, and the changes in stress
state influence the strain energy in the thin film and finally
lead to the formation of various fiber texture. Therefore, the
strain energy of L1,-FePt films under different stress states
and the relationship between stress and texture are crucial to
clarify the mechanisms of texture formation and evolution.

The thickness of L1,-FePt thin film is much smaller than
the substrate thickness, and the external stress is completely

Table 4 Elastic properties of L1 -FePt thin films with (kkl) fiber

textures
Texture Young's Biaxial elastic Poisson’s ratio, v
modulus, £/GPa  modulus, M/GPa
(001) 241.43 277.48 0.355
(110) 253.87 333.17 0.373
(111) 216.83 406.05 0.411
(100) 201.48 234.83 0.357
(011) 210.89 362.23 0.403
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Fig.2 Schematic diagrams of in-plane strains of thin film: (a) unit
volume circle; (b) crystal coordinate system of L1 -FePt thin
film; (c) change in radius of unit volume circle before and after
ordering phase transformation of crystal faces along different

orientations
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energy of the L1 -FePt thin film.

The strain energies of the L1,-FePt thin film under ideal
textures of {001}, {010}, {111}, {101}, and {110} are
calculated. According to Fig.2c, in the case of ordering phase
transformation, different transformation strains (g) are
generated on the crystal faces of different orientations, which
can be expressed by the radius difference between the unit
volume circle before and after ordering phase transformation,

as follows:
R' - R
B = (18)

The in-plane strain generated by external stress in the thin

film before ordering phase transformation can be denoted by
the coefficient k. The range of in-plane strain generated by the
external environment to the L1-FePt thin film is assumed to
be (—-0.03, 0.03), and the thin film suffers ordering phase
transformation under different external stresses. Therefore, the
elastic strain energy of L1 -FePt thin films with different fiber
textures can be denoted by Eq.(19), as follows:
R'-R(1 +k) T

R(1+k) (19)

W= M, hk/|:

2 Results and Discussion

According to the anisotropic elastic modulus of L1 -FePt
thin film, the elastic strain energy of L1,-FePt film under the
combined action of external stress and phase change stress is
obtained. The results are shown in Fig. 3. The calculation
results show that the strain energies of L1-FePt thin films
with different fiber textures are substantially influenced by the
in-plane strain state.

When the ordering phase transformation occurs in the L1 -
FePt thin film, the in-plane compressive strain of 0—0.005
exists, the types of fiber textures vary less obviously based on
the elastic strain energy, and the surface energy of the thin
film is the main driving force for texture formation. When the
in-plane compressive strain further increases from 0.005, the
difference between fiber textures becomes obvious, the {100}
plane in the thin film possesses the minimum strain energy,
and the {001} plane has the maximum strain energy. With the
further increase in the in-plane compressive strain, an

0.6

—ao—(100)
| ——(110)
—a—(001)
—v—(111)
F—o—(011)

Strain Energy
o o S o
[\ [O%} S (o))

S
=

0.0L—= .
0.03 -0.02 -0.01 0.00 001 0.02 0.03

Biaxial Strain

Fig.3 Strain energy in L1-FePt thin films under different in-plane

biaxial strains

increasingly evident difference of strain energy can be
observed between {100} and {001} planes. The formation of
{100} fiber textures in the L1-FePt thin film is facilitated by
minimizing the strain energy when the thin film is subjected to
ordering phase transformation under a large in-plane
compressive strain. However, when it is at the in-plane tensile
strain state, the {001} crystal face possesses the minimum
strain energy. The difference of this crystal face from other
crystal faces is more obvious with the increase in the in-plane
tensile strain, thus promoting the formation of {001} fiber
textures in the L1,-FePt thin film.

Hence, in order to obtain strong {001} fiber textures, L1 -
FePt thin films should be adjusted to reach the in-plane tensile
stress state before the ordering phase transformation.
Moreover, the larger the in-plane tensile strain, the better the
formation of {001} fiber texture.

3 Conclusions

1) When L1,-FePt thin film is at in-plane compressive
stress state during ordering phase transformation, the
formation of {100} fiber textures is promoted.

2) {001} fiber textures tend to appear when L1 -FePt thin
film is at tensile stress state.

3) The larger the in-plane tensile strain, the better the
formation of {001} fiber texture, and the stronger the intensity
of {001} fiber texture.
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