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Abstract: Four machine learning algorithms were used to predict the solid solution phases of high-entropy alloys (HEAs). To improve

the model accuracy, the K-fold cross validation was adopted. Results show that the K-nearest neighbor algorithm can effectively

distinguish body-centered cubic (bcc) phase, face-centered cubic (fcc) phase, and mixed (fcct+bec) phase, and the accuracy rate is

approximately 93%. Thereafter, CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs were prepared and characterized by X-ray diffractometer and

energy disperse spectrometer. It is found that their phases are transformed from fcc phase to fcct+bee phase, which is consistent with

the prediction results of machine learning. Furthermore, the influence of Al content on the microstructure and tribological properties
of CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs was evaluated. Results reveal that with the increase in Al content, the nanohardness and
microhardness increase by approximately 45% and 75%, respectively. The elastic limit parameter H/E increases from 0.0216 to

0.030, whereas the plastic deformation resistance parameter H*/E’ increases from 0.0014 to 0.0045, which demonstrates an

improvement in nanohardness with the increase in Al addition amount. In addition, the wear rate decreases by 35% with the increase

in Al addition amount. This research provides a new idea with energy-saving and time-reduction characteristics to prepare HEAs.
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In recent years, high-entropy alloys (HEAs) have become
one of the hotspot materials as a new type of metallic mate-
rial. HEAs are composed of at least four principal elements
with approximately equal atomic ratios"’. The atomic molar
percentages of each element in the alloy range between 5at%
and 35at%”*. HEAs have superb properties, such as high
hardness, high strength, fine oxidation resistance, and good
corrosion resistance', therefore attracting much attention on
their composition design and property enhancement.

The traditional trial-and-error experiment approach is not
only time-consuming and costly but also demands stringent
conditions, resulting in difficulty to conduct multiple
experiments in a short period. As research progresses,
computational intelligence simulation methods have been
applied to design HEAs, such as first-principles calculations®,
parameter methods', and CALPHAD method”. Although the
conventional methods are relatively accurate in HEAs study,
their high cost and multiple influencing factors involved make
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the design process quite challenging.

The recent integration of artificial intelligence-driven
machine learning (ML) has emerged as a potent strategy for
the design of novel multicomponent alloy systems. The
versatility and algorithmic generalization capabilities of ML
not only expedite the design process but also promote the cost-
effective procedure. Using multipurpose learning, ML
algorithms can rapidly identify patterns and relationships
within  complex datasets, thereby streamlining the
development of new alloy systems with enhanced properties.
Bobbili et al®™ predicted the phases in HEAs through ML and
found the XGBoost algorithm could achieve the accuracy rate
of 90%. Guo et al” predicted the phases in HEAs and reported
that the prediction accuracy rate was over 89% for
intermetallic compounds and over 98% for solid solutions and
amorphous phases. Li et al"” used ML and material descriptor
selection by enhanced genetic algorithm to predict the

hardness of HEAs in the Al-Co-Cr-Cu-Fe-Ni system. Ofiate et
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al"" applied ML to 2434 experiment data for phase prediction,
and the optimal evaluation model was Random Forest model
with the accuracy rate of 72.8%. Although multiple researches
have been conducted by ML, the application of ML in the
realm of HEAs is still in its nascent stage, and several
challenges may impede its effectiveness. The absence of
comprehensive experiment database and the
selection of feature combinations can lead to significant

irrational

predictive uncertainties.

HEAs are considered as effective wear-resistant materials.
Jiang et al'” investigated the microstructure and tribological
properties of the Co-Fe-Ni-V-Zr HEAs. It is concluded that
with Zr addition and grain size reduction, the wear resistance
is greatly increased. Yu et al™ found that the wear resistance
of the Co-Cr-Fe-Ni-Nb HEAs was superior, compared with
that of Inconel 718 alloy. Zhang et al'! investigated the
impact of Al content on the wear resistance of Al-Cr-Ti-Mo
alloy system, and concluded that increasing the Al content
could enhance the wear resistance. Furthermore, based on the
Archard wear equation, the wear resistance of a material is
directly related to its hardness". For instance, Liu et al'”
prepared the CoCrFeNiW_ (x=0, 0.25, 0.50, 0.75, 1.00) HEAs
and reported that with the increase in W content, the
microhardness is increased and the wear resistance is
improved significantly. Xing et al"” found that the Al-doping
could lead to the reduction in the coefficient of friction (COF)
and the increase in hardness, thereby improving the wear
resistance. Moreover, with higher Al content, the primary
wear mechanisms were identified as abrasive wear and
oxidative wear. Wu et al"” reported that the addition of Ti
could enhance both the hardness and oxidation resistance of
AlICrFeCoNi HEA, resulting in better wear performance.
These studies all provide valuable insights into the
tribological properties of HEAs. Despite the extensive
research on the AICoCrFeNi alloy system, investigations into
its wear characteristics at both the nano- and macro-scales are
rare, particularly those employing ML approach. Moreover,
the relationship among phase evolution, grain size, and wear
resistance is still indistinct.

Hence, in this research, a series of CoCrFeNi,Al (x=0, 0.1,
0.3, 1.0) HEAs were designed using ML, and the phase and
hardness of the alloys were predicted based on the practical
considerations and the dataset. The influence of Al content on
the microstructure evolution, grain size, and phase
components was investigated. Wear resistance at both the
nano- and macro-scales was analyzed, and the tribological
mechanisms were also discussed.

1 Experiment and Prediction Model Establishment

1.1 Experiment

The CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0, at% ) HEAs were
prepared by vacuum-arc-melting method, whose raw materials
were Cr, Fe, Ni, Co, and Al metals with purity of 99.99%. To
prevent oxidation, the arc-melting process was performed in a
high-purity argon atmosphere with Ti-gettering. In the melting

process, electromagnetic stirring method was used to turn the
ingot over and remelt the ingot for 6 times to ensure the
obtain the
microstructure, the as-cast samples were subjected to
annealing in a tubular furnace at 1473 K (1200 °C) for 4 h
followed by water quenching.

The crystal structure of the alloys was identified by X-ray
diffractometer (XRD) using Cu Ka radiation at 40 kV and 100
mA, and the 26 value was in the range of 20°-100° at the scan
rate of 2°/min. The microstructure of the samples was exam-

chemical homogeneity. To homogeneous

ined using transmission electron microscope (TEM). The
samples were mechanically ground to approximately 30 um in
thickness and subsequently subjected to electropolishing using
the mixed solution of 90vol% alcohol and 10vol% perchloric
solution.

The hardness tests were conducted by Vickers hardness
tester with load of 500 g and dwell time of 10 s. Each sample
was measured multiple times for accurate analysis. The
indentation tests were performed at the load of 8000 uN and
loading rate of 1000 puN/s, and the probe with an effective tip
radius of 400 nm was used. The experiments were conducted
using the Hysitron Triboscope. Linear reciprocating friction
tests of HEAs were conducted using the multifunctional fric-
tion and wear tester (NCETRUMT-3MO) at room tempera-
ture. A ceramic ball made of Al,O, with diameter of 9.525 mm
was selected as the friction counterparts. The test parameters
were set as follows: contact load of 10 N, sliding speed of 5
mm/s, and sliding duration of 30 min. Each sample underwent
at least three repetitions of the sliding friction test. After the
friction test, the wear trace morphologies were observed by
scanning electron microscope (SEM) to analyze the wear mech-
anism. Additionally, energy dispersive spectrometer (EDS)
was employed to assess the chemical composition of the wear
marks. The wear rate K can be calculated by Eq.(1), as follows:

_r

K—Fd (D)
_my—m )
v T, (2

where V' is the wear volume, F' is the applied load, d is the
total sliding distance, m, represents the mass before wear, m
represents the mass after wear, and p represents the density of
different alloys measured by the Archimedes drainage method.

For simplification, the CoCrFeNi,, CoCrFeNiAl,,
CoCrFeNi,Al,, and CoCrFeNi,Al, , HEAs are denoted as AlO,
Al0.1, Al0.3, and Al1.0, respectively.
1.2 Phase prediction

In this research, data from numerous investigations!'>"
were used to establish ML-based model for phase prediction,
and all necessary data were sourced exclusively from the
vacuum arc-melted samples. After data cleaning of the
collected alloy data, 656 alloys were obtained, including 306
body-centerd cubic (bce) alloys, 194 face-centered cubic (fcc)
alloys, and 156 fcctbee alloys. To mitigate the potential
impact of imbalanced experiment data on the accuracy of the
predictive outcomes, a random oversampling technique was
implemented. Among them, the bcc class was the primary
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class affected by the imbalance. Following the random
oversampling procedure, each class now contained 306 data
points (306 bece, 306 fcc, 306 fect+bec).

After the labels for phases were identified, four ML models
were established for phase prediction of alloys, namely sup-
port vector machine (SVM) model, K-nearest neighbor (KNN)
model, neural network (NN) model, and ensemble learning
model. In addition, 10-fold cross-validation was employed to
minimize the influence of individual samples on the training
process. A set of six pertinent features was chosen for phase
prediction. These features included enthalpy of mixing
(AH_,), atomic size difference (), valence electron concentra-
tion (VEC), entropy/enthalpy ratio (), melting temperature
(T,), and mixing entropy (AS, ). The numerical values for
these features can be determined by Eq.(3-8)**, as follows:

AH , = i 4c,c,AHY

J mix (3)
i=1i#j
5= [>e 1=y )
i=1
VEC = >'¢,(VEC), ®)
i=1
ASmix = _R zci ln ci (6)
i=1
Q — TmASmix (7)
’AHmix
T,=>cT, 8)

i=1
where ¢, and ¢, are the atomic percentages of the ith and jth
components, respectively; AH

iX

is mixing enthalpy of binary
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i=1
represents VEC value of the ith element; R is the gas constant
of 8.314 J-K™mol™; T,, represents the melting point of the ith
element in the alloy.
1.3 Hardness prediction

The hardness datasets of HEAs prepared by vacuum arc-
melting were collected from Ref.[33-37]. The eigenvalues are
AH ., 6, Ay, VEC, and AS

o and the formula for Ay is as
follows:

> 1)

i=1

Ay =

©)

where y, is the Pauling electronegativity of the ith element.
Based on extensive experiments concerning the number of
neurons, a suitable model of back propagation NN optimized
by genetic algorithm (GA-BP) was proposed. Typically, NN
model consists of three distinct layers—input layer, hidden
layer, and output layer, which are interconnected by neurons.
The model undergoes iterative training and testing until the
error threshold was achieved, resulting in optimal hardness
predictions. The element composition and characteristic
parameters of CoCrFeNi,-based alloys were used as inputs.

2 Results and Discussion

2.1 Phase prediction and microstructure characterization

Fig. 1 shows the confusion matrixes for the test data by
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Fig.1 Confusion matrixes of KNN model (a), ensemble learning model (b), NN model (¢), and SVM model (d)
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different models. Based on the prediction results, it can be
observed that KNN model achieves the highest accuracy rate
of 96.3% for fcc phase prediction. The accuracy rates of
ensemble learning and NN models to predict fcc phase
achieve 92.6% and 93.0%, respectively, indicating that these
models provide accurate classification for fcc-type alloys.
When predicting bee phase and fect+bee phase, KNN model
achieves the accuracy rate of 90.4% and 89.3% respectively,
and NN model achieves the accuracy rate of 90.1% and 89.3%
respectively, indicating similar misclassification rates for
KNN and NN models. The ensemble learning model has the
highest accuracy rate (91.2%) for the bcc phase prediction,
and SVM model has the highest accuracy rate (91.5%) for
fcetbee phase prediction. Overall, the KNN model can
effectively distinguish bce phase, fcc phase, and mixed (fec+
bce) phase, and the accuracy rate is approximately 93%.

Receiver operating characteristic (ROC) curves of phase
prediction by KNN model are shown in Fig.2, and the above-
mentioned prediction results are consistent with the trends in
Fig.2, illustrating that the value of area under the curve (AUC)
can be primarily used to evaluate the quality of the classifi-
cation. Generally, the closer the AUC value to 1, the better the
performance of the models. AUC values of the models in this
research are more than 0.96, which indicates that these models
provide accurate predictions for phase identification.

In this research, the KNN-predicted phase components of
Al0, Al0.1, Al0.3, and Al1.0 samples are fcc, fcc, fec, and fect+
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Fig.2 ROC curves of KNN model

bce phases, respectively.

Fig. 3a displays XRD results of CoCrFeNi,Al (x=0, 0.1,
0.3, 1.0) HEAs. When x<0.3, the phase composition of HEAs
barely changes, and they all possess the fcc structure.
However, with the increase in Al addition (x=1.0), HEA is
composed of fcc phase plus ordered bee phase structure (B2
phase). Magnified image of (111),, diffraction peak is
displayed in Fig.3b. It can be seen that when x increases from
0 to 1.0, the (111),, diffraction peak shifts to lower 26 region.
Based on XRD results, the lattice constants of the CoCrFeNi,-
Al HEAs with x=0, 0.1, 0.3, and 1.0 can be calculated as
0.352 74, 0.357 07, 0.357 62, and 0.358 18 nm, respectively,
as listed in Table 1. The theoretical lattice constant equation is
expressed in Eq.(10), as follows:

Anix — jciai (10)
i=1

where ¢, and a, are the atomic percentage and lattice constant
of the ith component, respectively.

According to Table 1, the theoretical lattice constants of
Al0, AlO.1, Al0.3, and Al1.0 samples are 0.327 08, 0.328 48,
0.331 52, and 0.340 09 nm, respectively. It can be seen that
the measured values of lattice parameters are consistent with
the theoretical ones. According to Bragg’s law, the diffraction
peak shift can be attributed to the greater radius of Al atom
(0.143 nm), which leads to severe lattice distortion.

Because AlO, Al0.1, and Al0.3 samples have similar crystal
structures, only the microstructures of Al0.3 sample are used
to compare with those of All.0 sample for simplification.
TEM microstructures of the as-cast CoCrFeNi,Al (x=0.3, 1.0)
HEAs are shown in Fig.4. It can be seen that there is only
a simple fcc phase in Al0.3 sample. However, mixed bright
and dark stripes can be observed in All.0 sample. The spacing
of the bright and dark stripes is more than 500 nm but less
than 1 pm.

2.2 Wear-related hardness

2.2.1 Training, test, and validation in GA-BP model

79 datasets were split into three subsets for training, test,
and validation for GA-BP model building, and the proportion
for each subset is 80%, 10%, and 10%, respectively. To ensure
the stability of input dataset, the feature scaling function
was applied initially to normalize all datasets. The equation
for the general formula of characteristic scale is presented
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Fig.3 XRD patterns of as-cast CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs: (a) 260=20°-120°; (b) 20=42°-46°
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Table 1 Experimental and theoretical lattice constants of
CoCrFeNi,Al_(x=0, 0.1, 0.3, 1.0) HEAs

Sample Experimental value/nm  Theoretical value/nm  Error/%

AlO 0.352 74 0.327 08 7.274 5
Al0.1 0.357 07 0.328 48 8.006 8
Al0.3 0.357 62 0.331 52 7.298 2
AllL.O 0.358 18 0.340 09 5.050 5

by Eq.(11)%*, as follows:
. — mean (x,

scale Std (x[)
where x; is the eigenvalue of the ith alloy element.
Using the error trial algorithm, a 10-7-1 backpropagation
NN structure was selected for model implementation. During
the execution of GA-BP model, the mean square error (MSE)
between the desired and predicted values was calculated. The
training performance curve is presented in Fig.5. The average
error converges to 5.5998x107, reaching saturation at the 14th
epoch. After several iterations and training sessions, the model
achieves satisfactory training results.
2.2.2  Sensitivity analysis
Sensitivity analysis is a technique to investigate how varia-
tions in the state or inputs of a model influence the output
parameters or environmental conditions. Specifically, it reflects
the variation amplitude of model output induced by model
parameters. In this research, the input parameters include

alloying elements and characteristic parameters, whereas the
output parameters are the hardness values of HEAs. A fully
developed model was used in this research, and only one
parameter varied at each time with other parameters remaining
constant™. The input parameter set with the minimum value
is referred as the minimum set, and the input parameter set
with the maximum value is termed as the maximum set™”.

For example, in the sensitivity analysis of Fe, its input
parameters vary between maximum and minimum values,
whereas other parameters remain constant. Fig. 6 shows the
sensitivity analyses of different alloying elements by GA-BP
hardness prediction model.

The variation trends of minimum and maximum set line
segments are basically similar to Fe content variation trend
(Fig. 6a), which confirms that GA-BP model can effectively
predict the influence of Fe content on the hardness of HEAs.
Similarly, the outputs for Al and Co content influence exhibit
considerable significance. However, the influence of Cr and
Ni contents is not as significant as that of other alloying
elements. This phenomenon can be primarily attributed to the
predictive errors stemming from the limited dataset used
during the training, test, and validation.

2.2.3  Comparison between ML prediction and test results

Fig.7a illustrates the correlation coefficients (R) of the GA-
BP prediction model. This model can be not only effectively
trained (R=0.994 62) but also verified (R=0.979 39) with the
optimal test set (R=0.963 04). The final simulation result for

=" |

Fig.4 TEM microstructures of as-cast Al0.3 (a—b) and Al1.0 (c—d) samples
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Fig.5 MSE curves during training of GA-BP model for hardness

prediction

the entire model is R=0.980 97, demonstrating that the model
predictions are highly consistent with the true values. Fig.7b
shows the comparison of hardness obtained by experiment
and prediction by GA-BP model. With the increase in Al
content, HEA hardness is gradually increased, indicating that
Al element can promote the improvement of alloy hardness.
The average error of predicted value is 4.6959%, and the
average prediction accuracy rate is 95.3041%, as shown in
Table 2. The abovementioned results reveal that GA-BP
model is highly accurate in hardness prediction of HEAs.
Furthermore, compared with that of Al0.1 and Al1.0 samples,
the prediction accuracy rate of Al0 and Al0.3 samples is
slightly lower, suggesting that the microstructural morphology
is a crucial factor influencing the hardness prediction. Briefly,
by GA-BP model, the hardness can be well predicted, whose
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correlation and minimum error can achieve 98.7930% and CoCrFeNi,Al_ (x=0, 0.1, 0.3, 1.0) HEAs is shown in Fig.7c.
1.2070%, respectively. The dislocation exists within the grain slid during plastic

The schematic diagram of strengthening modes in deformation. When the dislocations reach the grain boundary,
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Table 2 Comparison of hardness of CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs obtained by experiment and prediction by GA-BP model

Sample Experimental hardness/MPa Predicted hardness/MPa Error/% Accuracy/%
AlO 1146.6+49.0 1220.5528 6.4497 93.5503
Al0.1 1225.0+58.8 1239.7862 1.2070 98.7930
Al0.3 1479.8+49.0 1353.3388 8.5458 91.4542
AllL.0 4596.2+68.6 4477.5641 2.5812 97.4188
Average - - 4.6959 95.3041

they are obstructed, leading to the blocking and entanglement
of the dislocations™". Furthermore, due to the greater radius of
Al element, when the Al element is doped into the alloy, the
of other
phenomenon leads to lattice distortion and prevents further

positions elements may be occupied. This
dislocation movement. Al0O, Al0.1, and Al0.3 samples only
have fcc phase, whereas the mixed phase exists in the All.0
sample. Due to the existence of the second phase (B2 phase),
the movement of dislocations in the fcc phase becomes more
and more difficult.
2.3 Nano- and macro-wear resistance
2.3.1
The typical load (p) -depth (%) curves of the as-cast
CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs are shown in Fig.8a.
The indentation depth is decreased with the increase in Al

Nano-wear resistance

content. In comparison to HEAs with sole fcc phase, the dual-
structured HEA exhibits
indentation depths. It can be seen that the bec phase region of

phase significantly shallower

All.0 sample has the smallest indentation depth, indicating

that it has significantly higher hardness than other samples.
The nanohardness (/) and elastic modulus (£,) of
CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs are depicted in Fig.8b
and 8c, respectively. The corresponding H, and E_ results of
bee and fec phases of CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs
are shown in Table 3. These results suggest that both the H,
and E_ values are increased with the increase in Al content.
Among these HEAs, the bce phase region of All.0 sample
exhibits the greatest H, value (around 5.4 GPa) and E value
(around 187 GPa). When x=0 changes to x=1.0, the
nanohardness is increased from 3.1 GPa to 5.4 GPa, and the
Vickers hardness is increased from 1146.6 MPa to 4596.2
MPa, as listed in Table 2. Furthermore, the elastic modulus
results are in agreement with the nanohardness results. Apart
from H, and E_, the wear resistance can also be evaluated
through the nanoindentation test“”’. The elastic limit of the
contact surface is usually reflected by H/E, value, where H is
the hardness and E, is the reduced elastic modulus, and the

plastic deformation resistance of materials under an applied
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8000 101 7| < v
——Al03 £ | S1e0}
L] 94} M
Z AlLO-bee 2 % 2
2 4000 e / S
ST 2 / =
2000 . S
0 50 100 150 200 250 300 350 Al0  Al0.1 Al0.3 All.0 Al0  Al0.1 AlO.3
Depth/nm Sample Sample

Fig.8 Typical load-depth (p-h) curves of as-cast CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs (a); nanohardness (b) and elastic modulus (c) of

CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs

load is often reflected by H'/E] value™. Therefore, higher
H/E, and H’/E? values indicate better wear resistance™. In
this research, the E, value is the Young’s modulus, as follows:

Table 3 Nanohardness (H) and elastic modulus (E,) of different
phases in CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs

Sample Phase Nanohardness, H,/GPa Elastic modulus, £ /GPa

—_y 2
1 - v,

I 1-v?
E E E (12)

where £=1141 GPa and v=0.07 are the Young’s modulus and
Poisson’s ratio of the indenter, respectively; E, and v=0.2
are the Young’s modulus and Poisson’s ratio of HEA sample,
respectively.

The H and E, values of CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0)
HEAs are shown in Table 4. The results demonstrate that with

AlO fee 3.1 153
AlO.1 fee 3.5 161
614!
Al0.3 fee 3.8 174
fce 4.7 180
AllL.O
bce 5.4 187
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the increase in Al content, both A and E, show an increasing
trend. However, the H increment is larger than E, increment.
As shown in Table 4, both H/E, and H/E’ values show
increasing trend, which indicates that the wear resistance of
CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs is increased with the
increase in Al content.
2.3.2 Macro-wear resistance

The tribological characteristics of CoCrFeNi,Al (x=0, 0.1,
0.3, 1.0) HEAs under linear reciprocating motion mode were
investigated. Fig. 9 presents the wear test results of the
CoCrFeNi,Al_(x=0, 0.1, 0.3, 1.0) HEAs. Fig.9a illustrates the
fluctuation curves of COF of different samples over 1800 s.
COF of Al0 sample is 0.8140 and that of All.0 sample is
0.4891, inferring that All.0 sample has the optimal wear
resistance. Nevertheless, when x=0.3, COF increases to
0.9976. The Al addition leads to a notable enhancement in
wear resistance with the wear rate decreasing from 3.591x107
mm>N"m™ to 2.332x10™* mm’-N""-m™', as shown in Fig.9b.
The improvement in wear resistance of the CoCrFeNi,Al
HEASs can be attributed to the optimized phase composition
and particle size. Generally, the wear resistance has a positive
correlation with the hardness™. The fcc phase can be regarded
as a comparatively soft phase. Hence, the CoCrFeNi, HEA,
which only consists of fcc phase, shows the worst wear
resistance. Doping Al results in the formation of eutectic

Table 4 H/E, and H'/E values of CoCrFeNi,Al_(x=0, 0.1, 0.3,

1.2
a
1.0}
0.8
& i
o) 0.6
O
041
— Al0
02F ——Al0.1
Load: 10 N ——Al0.3
0.0F Sliding speed: 5 mm/s All.0
0 5 10 15 20 25 30
Time/min

Al0.1

Al0.3
Sample

AlO Al1.0

Fig.9 COF curves (a) and wear rates (b) of CoCrFeNi,Al (x=0, 0.1,
0.3, 1.0) HEAs

structure consisting of both fcc and B2 phases. Therefore, the
significant improvement in wear resistance of All.0 sample
can be attributed to the presence of high-hardness B2 phase.
This result is in agreement with the high H/E, and HY/E}
values of Al1.0 sample. Moreover, COF values exhibit a sharp
increase at the beginning of friction and then stabilize. COF of
Al0 sample gradually stabilizes after approximately 5 min.
After Al addition, the run-in time is prolonged to 10 min. The
increased hardness poses greater resistance against plastic
deformation, prolonging the duration for the establishment of
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Fig.10 Particle size distributions of Al0 (a), Al0.1 (b), Al0.3 (c), and Al1.0 (d) samples
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stable friction layer.

It is worth noting that COF of the Al0.3 sample is quite
different from that of the Al0.1 sample, which may be
attributed to the grain size. According to XRD results, the
trace addition of Al does not induce the phase transformation.
Thus, the Al0.3 sample displays the simple fcc structure just
as the Al0.1 and AlO samples. However, the average grain size
of the Al0.1 sample is much greater than that of the Al0.3
sample. The particle size distributions of CoCrFeNi,Al (x=0,
0.1, 0.3, 1.0) HEAs are shown in Fig.10. It is reported that the
grain size has close relationship with the hardness, which can
be explained by the Hall-Petch equation' ", as follows:

ny
H=H,+K,d? (13)
where H~558.40 MPa"™, K =112.51"", and d is the particle

N

4/ . o N
Plastic:deformation™g

100 pm~ | -

P,

g, w B BN
.. “Plastic deformation™s. .
£ e

A

Wear debris-

Y N\

size.

The wear surfaces of CoCrFeNi, Al (x=0, 0.1, 0.3, 1.0)
HEAs are shown in Fig.11. It can be seen that the AI0 sample
exhibits notably more pronounced spalling phenomenon,
indicating severe plastic deformation. This phenomenon is
primarily due to the low hardness and high plasticity of fcc
phase coupled with the shear forces engendered during the
friction experiments. Therefore, Al0 sample is particularly
susceptible to plastic deformation and extensive spalling can
also be observed under the sliding of friction pair. The surface
of the Al0 sample has numerous parallel grooves along the
sliding direction, resulting from the severe abrasive wear
during friction. Similar wear characteristics can also be
observed on the Al0.1 sample surface (Fig. 11b). Therefore,
the wear mechanisms of the Al0 and Al0.1 samples involve
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Fig.11 SEM wear morphologies (a—b, d—e, g-h, j—k) and EDS element distributions (c, f, i, 1) of Al0 (a—c), Al0.1 (d—f), Al0.3 (g—i), and Al1.0 (j-1)

samples after friction wear tests at room temperature
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severe adhesive and abrasive wear. Under sharp contrast
condition, the wear surfaces of the Al0.3 sample exhibit
microcrack damages (Fig. 11c), which can be attributed to
fatigue crack propagation caused by stress concentration. This
is attributed to the inferior crack resistance of CoCrFeNi,-
based HEA, which leads to the occurrence of cracks under
high load wear conditions, consequently reducing the service
life®". The presence of cracks increases the roughness of the
contact surface, leading to brittle spalling and the increase in
wear rate. Therefore, at room temperature, the mechanical
properties greatly influence the wear resistance. The wear
marks of abrasive traces along with a few grooves can be
observed, indicating that the wear mechanism of the Al0.3
sample involves both abrasive wear and fatigue wear™. The
surface wear marks of the All.0 sample are uniform without
apparent adhesion or cracking (Fig.11d). Some abrasion debris
and furrows can be observed, indicating that the predominant
form of wear is mild plastic deformation and abrasive wear.

Based on the wear morphologies and EDS results, it can be
inferred that increasing the Al content can enhance the surface
hardness of HEA. The change in composition leads to a
transition in the wear mechanism from severe adhesive wear
to abrasive wear. Consequently, the wear resistance of HEA is
significantly enhanced.

3 Conclusions

1) With the increase in Al content, the crystalline structure
of CoCrFeNi,Al (x=0, 0.1, 0.3, 1.0) HEAs varies from fcc
phase to mixed fcctbec phase.

2) Among the phase prediction models (SVM, KNN, NN,
and ensemble learning), KNN model possesses the highest
accuracy rate of approximately 93%. By GA-BP model, the
hardness can be well predicted, whose correlation and
minimum error can achieve 98.7930% and 1.2070%,
respectively.

3) With the increase in Al content from x=0 to x=1.0, the
nanohardness is increased from 3.1 GPa to 5.4 GPa, and the
Vickers hardness is increased from 1146.6 MPa to 4596.2
MPa.

4) The wear rate decreases from 3.591x10™ mm**N"-m™ to
2.332x10™ mm’-N"'-m™" with the increase in Al addition. For
Al0 and Al0.1 samples, severe adhesive wear and abrasive
wear occur during wear tests. For Al0.3 sample, the abrasive
wear and fatigue wear are dominated wear mechanisms. For
All.0 sample, only mild plastic deformation and abrasive
wear occur.

References

1 Yeh Jien Wei, Chen Swe Kai, Lin Su Jien et al. Advanced
Engineering Materials[J], 2004, 6(5): 299

2 Zhang Yong, Zuo Tingting, Tang Zhi et al. Progress in Materials
Sciencel[J], 2014, 61: 1

3 Feng Li, Wang Mengqi, Zhao Yanchun et al. Rare Metal
Materials and Engineering[J], 2024, 53(1): 85 (in Chinese)

4 Yuan Kunquan. Rare Metal Materials and Engineering[J], 2023,
52(11): 3981 (in Chinese)
5 Yoav Lederer, Cormac Toher, Kenneth Vecchio et al. Acta
Materialia[J], 2018, 159: 364
6 Senkov O, Miller J, Miracle D B et al. Nature Communica-
tions[J], 2015, 6(3): 6529
7 Zhang F, Zhang C, Chen S L et al. Calphad[J], 2014, 45: 1
8 Bobbili R, Ramakrishna B. Materials Today Communications[J],
2023, 36: 106674
9 Guo Qingwei, Xu Xiaotao, Pei Xiaolong et al. Journal of
Materials Research and Technology[J], 2023, 22: 3331
10 Li Shuai, Li Shu, Liu Dongrong et al. Computational Materials
Sciencel[l], 2022, 205: 111185
11 Ofate Angelo, Sanhueza Juanpablo, Zegpi Diabb et al. Journal
of Alloys and Compounds|[J], 2023, 962: 171224
12 Jiang Junjie, Zhang Aijun, Han Jiesheng et al. Tribology
InternationallJ], 2024, 191: 109154
13 Yu Yuan, He Feng, Qiao Zhuhui et al. Journal of Alloys and
Compounds[J], 2019, 775: 1376
14 Zhang Ruiyang, Tulugan Kelimu, Zhang Aijun et al. Journal of
Materials Engineering and Performance[J], 2022, 31: 984
15 Archard J F, Hirst W. Proceedings of the Royal Society A[J],
1956, 236(1206): 397
16 Liu Hao, Gao Qiang, Dai Jianbo et al. Tribology Interna-
tional[J], 2022, 172: 107574
17 Xing Xuewei, Liu Ying, Hu Jinkang et al. Materials Research
Express[J], 2022, 9: 036510
18  Wu Mingyu, Chen Ke, Xu Zhen et al. Wear[J], 2020, 462—463:
203493
19 Miracle D B, Senkov O N. Acta Materialia[J], 2017, 122: 448
20 YeY F, Wang Q, LuJ et al. Materials Today[J], 2016, 19: 349
21 Couzinié¢ J P, Senkov O N, Miracle D B et al. Data in Brief[J],
2018, 21: 1622
22 Gorsse S, Nguyen M H, Senkov O N et al. Data in Brief[J],
2018, 21: 2664
23 Yang X, Zhang Y. Materials Chemistry and Physics[J], 2012,
132(2-3): 233
24 Chang H N, Tao Y W, Liaw P K et al. Journal of Alloys and
Compounds[J], 2022, 921: 166149
25 Guo Sheng, Ng Chun, Lu Jian et al. Journal of Applied Phys-
ies[J], 2011, 109: 103505
26 Zhu Wenhan, Huo Wenyi, Wang Shiqi. Journal of Materials
Research and Technology[J], 2022, 18: 800
27 Jeong Il Seok, Lee Joo Hyoung. Materials & Design[J], 2023,
227: 111709
28 Zhao Fengyuan, Ye Yicong, Zhang Zhouran et al. Rare Metal
Materials and Engineering[J], 2023, 52(4): 1192
29 Poletti M G, Battezzati L. Acta Materialia[J], 2014, 75: 297
30 Xue Yuan, Shan Guibin, Pan Ruilin et al. Rare Metal Materials
and Engineering[J], 2024, 53(1): 56 (in Chinese)
31 Takeuchi A, Inoue A. Materials Transactions[J], 2005, 46(12):



Zhang Mengdi et al. / Rare Metal Materials and Engineering, 2025, 54(2):343-353 353

2817 Mechanical Behavior of Biomedical Materials[J], 2011, 4(8):
32 De Boer F R, Mattens W, Boom R et al. Cohesion in Metals: 1709
Transition Metal Alloys[M]. Amsterdam: North-Holland, 1988 43 Chen Hao, Cui Hongzhi, Jiang Di et al. Journal of Alloys and
33 Zhang Yifan, Ren Wei, Wang Weili et al. Journal of Alloys and Compounds[J], 2022, 899: 163277
Compounds[J], 2023, 945: 169329 44 Ehtemam Haghighi Shima, Cao Guanghui, Zhang Laichang.
34 Chen Cun, Ma Leiying, Zhang Yong et al. Intermetallics[J], Journal of Alloys and Compounds[J], 2017, 692: 892
2023, 154: 107819 45 YeY X, LuZ P, Nieh T G. Scripta Materialia[J], 2017, 130: 64
35 Wu Shaoyu, Xu Xiaoqian, Yang Shani et al. Ceramics 46 Zhao Yanchun, Song Haizhuan, Ma Huwen et al. Rare Metal
International[J], 2023, 49: 21561 Materials and Engineering[J], 2024, 53(1): 102 (in Chinese)
36 Ye Yicong, Li Yahao, Ouyang Runlong et al. Computational 47 Hidesato Mabuchi, Toshiei Hasegawa, Tadashi Ishikawa. IS1J
Materials Science[J], 2023, 223: 112140 International[J], 1999, 39: 477
37 Sheetal Kumar Dewangan, Ashutosh Sharma, Hansung Lee ef al. 48 Hurley P J, Muddle B C, Hodgson P D. Metallurgical and
Journal of Alloys and Compounds[J], 2023, 958: 170359 Materials Transactions A[J], 2001, 6(32): 1507
38 Aksoy S, Haralick R M. Pattern Recognition Letters[J], 2001, 49 Hidaka H, Tsuchiyama T, Takaki S. Scripta Materialia[J], 2001,
22:563 44(8-9): 1503
39 Sandeep Chaudhary, Umesh Pendharkar, Ashok Nagpal. Steel 50 Kunal B, Keche A J, Gogte C L et al. Materials Today:
and Composite Structures[J], 2007, 7(3): 219 Proceedings[J], 2020, 26(Part 2): 3173
40 Pendharkar U, Chaudhary S, Nagpal A K. Structural 51 Kenneth Holmberg, Anssi Laukkanen, Helena Ronkainen ez al.
Engineering and Mechanics[J], 2010, 36(2): 165 Tribology International[J], 2009, 42(1): 137
41 Wang Enhao, Li Jiaqi, Kang Fuwei et al. Journal of Materials 52 Jing Yongzhi, Fang Yongchao, Cui Xiufang et al. Tribology
Research and Technology[J], 2024, 28: 967 International[J], 2023, 185: 108551

42 Fornell J, Steenberge N V, Varea A et al. Journal of the

AIZEX CoCrFeNi, &S & ML K E#

e AN

kAR, Skokhy, BEREE, IRDGE
(LR FEHOR BB, L R 071002)

OB AR IR PN s A & (HEA) RIBREMA . AT e RTRIER %, KA 7 KT XIAE. 4920%0, K
AR (KNND S3E AT DL 0 X 43 0 52 5 (bee) A AL (fee) AR A (fectbee) #, #EMIZE N 93%. bE)a, & T
CoCrFeNi,Al (x=0. 0.1. 0.3F11.0) HEA, JfRH XSFLATHCCRBE R A HOGHE SO HRET 7 3RAE,  JLAH 8 — 10 fee FHELAE N fectbee
HH, XSS AT S5 R — 8. oAb, IEPPAE T A1 % CoCrFeNL AL (x=0. 0.1\ 0.3 F11.0) HEAs FF 25 14 K BE S R I
SN, SEAURW, BEE AL RN, GOKRE LA GO R Sy AN T £ 45% A1 75%. BATERRER S H/E M 0.0216 H1F0.030, T
WA ZH H/E? ) 0.0014 5115 0.0045, IXRWIHEE ALS BRI, 29KIEEEE T K. BAh, BE AL RN, BEHERRC
T 35%. ASHFFUA BT BRI I (1 HEA il 45 7 238 45 7 0 B

KB ML) mliaas B, mEIEaE

PEE RIS kA, 4, 19884F4, ik, #o%, WAL K¥FERARE #k, Wit fR%E 071002, E-mail: mengdizhang@hbu.edu.cn



