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Abstract: Based on the hot compression test data of as-cast AZ80 magnesium alloy under the conditions of deformation temperature
of 250~400 °C and strain rate of 0.001~1 s™', a physical-based constitutive model based on the stress dislocation correlation and
dynamic recrystallization dynamics and an artificial neural network (ANN) model based on feedforward backpropagation algorithm
were established to predict the thermal deformation behavior of AZ80 magnesium alloy. Three statistical indicators, correlation
coefficient (R), mean absolute relative error (AARE), and relative error (RE), were used to verify the prediction accuracy of these two
models. The results show that both the models can accurately predict the thermal deformation behavior of AZ80 magnesium alloy.
The stress value predicted by ANN model shows better agreement with the experimental data, and the value of R and AARE of ANN
model is 0.9991 and 2.02%, respectively. While the R and AARE predicted by the physical-based constitutive model are 0.9936 and
4.52%, respectively. The better predictive ability of ANN model is attributed to its ability to deal with complex nonlinear
relationships, while the predictive ability of the physical-based constitutive model is attributed to the fact that the model has certain
physical meaning. The thermodynamic mechanism of work hardening (WH), dynamic recovery (DRV), and dynamic recrystallization
(DRX) during thermal deformation are fully considered in the model parameters. Finally, the advantages and disadvantages of these

two models are compared and discussed.
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Magnesium alloy is the lightest structural material which is
widely used in modern industry due to its high strength,
specific stiffness, good casting performance, good heat
conduction, excellent electromagnetic shielding performance,
and easy recycling. It is an ideal material for realizing
lightweight component and resource reuse. According to the
forming process, it can be divided into cast magnesium alloy
and wrought magnesium alloy. The development of wrought
magnesium alloy is an important part of magnesium alloy
industry. Among all the wrought magnesium alloys,
Mg-Al-Zn alloy is widely used due to its low price. AZ80
magnesium alloy is a high-strength alloy in the traditional Mg-
Al-Zn series of wrought magnesium alloy, and has quite high
ductility, good corrosion resistance, good oxidation resistance,
and good welding performance, which can be manufactured
into sheets, strips, profiles, bars, pipes, forgings, die forgings,
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and other mechanical parts under the medium load. In
addition, the AZ80 alloy sheet can also be used as the skin,
wall panel, and internal components of aircraft and missiles,
and has broad application prospects in industry'.

The room temperature deformation mechanism of AZ80
magnesium alloy is dominated by the basal slip and twinning
which are easy to produce deformation texture, resulting in
poor ductility of magnesium alloy and difficult plastic
processing”. During high temperature deformation, AZS80
alloy with low stacking fault energy undergoes work
hardening (WH) and dynamic softening, including dynamic
recovery (DRV) and dynamic recrystallization (DRX), which
makes the flow stress change with varying the deformation
temperature, strain rate, and deformation degree. Therefore,
the investigation of hot deformation laws of magnesium alloys
is of great significance for the forming design and perfor-
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mance research of materials”™.

A constitutive model is the basis for describing the high-
temperature flow characteristics of materials. It reveals the
relationship between the flow stress and thermodynamic
parameters of deformed materials, and can effectively reflect
the dynamic response of materials during deformation.
Generally, the flow behavior of materials under high
temperature condition is the result of the combined effects of
three thermodynamic mechanisms: WH, DRV, and DRX.
Therefore, the establishment of an appropriate constitutive
model is the prerequisite for accurately predicting the flow
characteristics of materials. Lin et al™ summarized the
constitutive models established for metals or alloys in recent
years, and classified them into three categories: phenome-

171 and artificial

nological models®®, physical-based models
neural network (ANN) models"*",

Among the constitutive models, the phenomenological
model is widely used to predict the high-temperature flow
stress of materials due to its relatively simple calculation
process without considering the physical mechanism in the
process of thermal deformation. In order to further improve
the prediction accuracy of the model, it is necessary to
consider the physical meaning during the thermal
Based on the
correlation and DRX Kkinetics, researchers established the two-
stage constitutive models of firstly considering WH-DRV
mechanism and then considering DRX mechanism for
42CrMo steel, 7050 aluminum alloy, and nickel-based
alloy™, which comprehensively contained the mechanism
and thermal deformation behavior of DRV and DRX
processes. These models have certain physical significance,
and the results show that they have a good predictive ability.
However, the application of the two-stage constitutive model
in magnesium alloys is rarely reported.

The ANN model does not need to assume a mathematical

model and determine its parameters in advance, which

deformation. classic  stress-dislocation

provides a new way to predict the deformation behavior of
different
deformation response of materials at high temperature is

materials under conditions. In general, the
highly nonlinear, and many factors affecting the flow
characteristics of materials are also nonlinear-related, which
reduces the accuracy of the regression method in predicting
the flow stress. Neural network models are good at solving the
difficult problems in traditional calculation methods, espe-
cially for the complex nonlinear relationships. Peng et al™”
established a backpropagation (BP) neural network model for
as-cast Ti60 aluminum alloy with the mean absolute relative
error (AARE) of 2.41%. Haghdadi et al'’ established a BP
neural network model for A356 aluminum alloy, and its
AARE between the experiment results and predicted values
was 1.2%. Yan et al"” established a BP neural network model
for Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y alloy with AARE of 2.853%.
The results show that ANN model can predict the flow stress
of different materials effectively and accurately.

Based on the experiment data of hot compression tests, the

physical-based constitutive model and BP ANN model for

AZ80 magnesium alloy were established in this research. The
prediction accuracy of flow stress according to these two
models was compared quantitatively, and the advantages,
disadvantages, and applicability of these two models were
discussed, laying a foundation for simulation and process
optimization of thermal deformation process of as-cast AZ80
magnesium alloy.

1 Experiment

As-cast AZ80 magnesium alloy was used in this research,
and its chemical composition is shown in Table 1. In order to
reduce the residual stress and non-uniform deformation, the as-
cast AZ80 magnesium alloy was homogenized before hot
compression tests. The specimens were kept at 400 ° C for
12 h to eliminate the second phase and dendritic structure. The
hot compression specimen was a cylinder with the dimension
of @8 mmx12 mm. The specimen surface was smooth. The
hot compression tests were conducted on Gleeble-3500D
thermal simulation test machine. The deformation temperature
was 250, 300, 350, and 400 °C, and the strain rate was 0.001,
0.01, 0.1, and 1 s. The maximum deformation of the
specimen was 60%. The hot compressed specimens were
heated to a specified temperature with a heating rate of 5 °C/s,
and then kept at the temperature for 180 s to make sure
that every part of the specimens was at the same temperature.
After the hot compression test, the
quenched immediately to retain the high temperature

specimens were

structure.
2 Results and Discussion

The true stress-strain curves of AZ80 magnesium alloy
under thermal compression are shown in Fig.1. It can be seen
that the deformation temperature and strain rate have
significant effects on flow stress. At a specific strain rate, the
flow stress is increased with decreasing the deformation
temperature; at a specific temperature, the flow stress is
increased with increasing the strain rate. This is because the
thermal deformation of the material results from the
combination of WH and dynamic softening.

According to the dynamic softening mechanism of the
thermal deformation process, the flow stress-strain curve can
be divided into two categories: DRV and DRX, as shown in
Fig. 2. DRV is the main softening mechanism. At the
beginning of deformation, due to the leading role of WH and
DRYV, the flow stress is increased rapidly until the peak stress
o, When the equilibrium between WH and DRV is reached,
the saturation stress o,

sat

occurs. However, for the DRX curve,
as the amount of deformation increases, when the strain is
greater than the critical strain, the material undergoes DRX
process. Thereafter, WH, DRV, and DRX jointly affect the
flow stress of the material. As the deformation continues, the

Table 1 Chemical composition of AZ80 magnesium alloy (wt%)

Al Zn Mn Si Fe Ni Cu Mg
8.360 0.524 0385 0.076 0.005 0.006 0.003 Bal.
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Fig.2 Typical stress-strain curves of AZ80 magnesium alloy

softening effect of DRX gradually becomes obvious, and the
flow stress firstly increases to the peak stress o,, and then
gradually decreases.

3 Establishment of Constitutive Models

3.1 Establishment of physical-based constitutive model

According to the characteristics of hot compression
deformation behavior of AZ80 magnesium alloy, the
constitutive models of two-stages of WH-DRV and DRX were
established.

3.1.1 Constitutive model of WH-DRYV stage

The evolution of dislocation density with strain is generally
controlled by the competition between dislocation storage and
dislocation disappearance. The relationship between dislo-
cation density and strain can be expressed as follows':

dp

-U-Q 1
e Yo (M

o 90 02 04 06 08 Lo

True Strain

True stress-true strain curves of AZ80 magnesium alloys at different strain rates: (a) é&=0.001 s™', (b) é&=0.01 s, (c) é&=0.1s7",

where dp/de is the increase rate of dislocation density with
strain, p is the dislocation density, U stands for WH and can
be regarded as a parameter of strain, Q is the DRV coefficient,
and Qp is the DRV caused by dislocation disappearance and
rearrangement’”. The integration of Eq.(1) can be expressed
as follows:

P=g" (g - po) e @
where p, is the initial dislocation density. The -classic
relationship of flow stress-dislocation density"” is o=aub\/p,
where a is the material parameter, « is the shear modulus, and
b is a Burgers vector mode. By substituting the expression

into Eq. (2), the flow stress in WH-DRV stage can be

expressed as follows:
0.5

o =[al + (o7 ~ al)e”] 3
where o is the flow stress; the saturation stress o, and the
yield stress g, are equal to aubV U/Q and oub , / p,, respectively.

According to Eq.(3), it can be known that three parameters
(0, 0,, &) should be determined. The saturation flow
stress o, is usually determined by the relationship between
WH rate §=do/de and the flow stress o, as shown in Fig.3.
Firstly, the inflection point of the #-¢ curve can be obtained
(represented by the rectangular symbol in Fig.3). Then, the

saturated flow stress o.

sat

is equal to the horizontal intercept of
the tangent line of the #-o curve passing through the inflection
point. When - |d6/dg]
corresponds to the inflection point of the #-¢ curves, which is
also the critical condition for DRX initiation". The inflection
points of the #-o¢ curves and the peak points of the true
stress-strain curves can reveal the occurrence of DRX. It can

reaches the minimum value, it
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Fig.3 Relationships between WH rate @ and stress ¢ at different strain rates: (a) £&=0.001 s™', (b) é&=0.01 5", (c) é&=0.1 s™', and (d) é=1 5™

be seen from Fig.3a~3d that all curves have inflection points,
which clearly shows that DRX occurs in the deformation
process.

The results show that the saturated flow stress o, can be
expressed as a function of the peak stress g, by Eq.(4), as
follows:

Oy = ~23.88+ 1440, 4)

Fig. 4 shows the experiment results and the fitting line
obtained according to Eq.(4).

In general, the effects of deformation temperature and strain
rate on flow stress can be characterized by Zener-Hollomon

[17]

parameter, namely Z parameter *, and the expression of Z

parameter can be expressed as follows:

Z= éexp(RQT)

where ¢ is the strain rate (s™'), T is the absolute temperature
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Fig4 Relationship between saturation stress o, and peak stress o,

(K), R is the ideal gas constant (8.314 J-mol™"-K™"), and Q is
the deformation activation energy (J-mol™). In order to obtain
the value of Z parameter, the deformation activation energy QO
should be calculated firstly, and the detailed calculation
procedure was reported in Ref.[18]. The Q value of AZ80
alloy is estimated as 177 332 J-mol .

Based on the flow stress-strain curve, the yield stress o,
at different deformation temperatures and strain rates can
be directly obtained. Fig.5 shows the relationship between
the yield stress g, and the Z parameter. It is clear that
there is a good linear relationship, so the yield stress g,
can be expressed as a function of the Z parameter, as
follows:

o, = 0.40InZ + 1.43 (6)

According to Eq. (3), the DRV coefficient 2 can be
calculated by Eq.(7), as follows:

20

18t

2

16t

3 14r

3

2

> 12 B Experiment data

Fitting line
10 1 1 1 1 1
24 28 32 36 40
InZ

Fig.5 Relationship between yield stress ¢, and InZ
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Based on the flow stress-strain curves before reaching the
critical strain, the © values can be calculated. Fig.6 shows the
relationship between € and Z parameter. It can be found that
the DRV coefficient is increased with decreasing the Z
parameter, and Q can be expressed as an exponential function
of the Z parameter, as follows:
Q = 68.88512%0%! ®)
Therefore, the constitutive equations for the as-cast AZ80
magnesium alloy during the WH-DRYV stage can be expressed
as follows:

0.5
— 2 2 _ 2 -Qe
O-DRV - [O-sat + (O—O O—sat)e ]

Oy = ~23.88 + 1440,
o, = 0.40InZ + 1.43 ©)

Q = 68.885172°0645!1
Z = éexp(177332/RT)

3.1.2  Constitutive model of DRX stage

When the deformation degree is greater than the critical
strain ¢, the DRX grains nucleate and grow near the grain
boundaries, twin boundaries, and deformation bands. At
higher deformation temperature and lower strain rate, DRX
occurs more obviously.

In this research, the classic Avrami equation was used to
describe the DRX behavior of as-cast AZ80 magnesium alloy,
i.e., the DRX volume fraction (X;,) can be expressed as the

[19]

function of the strain &', as follows:

4
Xoux = 1~ exp| - K, (888) (£22,) (10)
p

where K, and n, are undetermined parameters. There are three
assumptions about the undetermined parameters K, and n:
(1) K, is a function of Z parameter™; (2) both K, and n, are the
function of Z parameter™; (3) K, and n, are constants under
different deformation conditions™".

It can be seen from Fig.2 that Ao of the curve o, deviating
from the curve oy, represents the softening degree of DRX,
and the maximum value is (¢~ 0,). Therefore, the DRX

sat

volume fraction can be expressed as follows:

42+ m  Experimentdata
Fitting line
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Fig.6 Relationship between InQ2 and InZ
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where o, is the flow stress when DRV is the main softening
is the
saturation stress resulting from the balance between WH and
DRV; o is the steady-state stress due to DRX. o, can be
calculated by Eq.(9). By combining Eq.(10) with Eq.(11), the
expression of flow stress in DRX stage can be obtained, as

mechanism; o, is the flow stress in the DRX stage; o,

at

follows:
Oprx — Oprv (asat B O-ss) x

(12)

8 gc ”d
1-exp| — K, () (ez¢.)
p
Acoording to Eq.(12), there are five unknown parameters,

including ¢, ¢, o, K, and n, Peak strain can be easily

obtained fromp the flow stress curves. Fig. 7 shows the
relationship between &, and Z parameter, so &, can be
expressed as a function of Z parameter:

g, = 0.0058Z°%7 (13)

Fig.8 shows the relationship between critical strain ¢, and Z
parameter. Similarly, the critical strain ¢, can be expressed as a
function of the Z parameter, as follows:

g, = 0.0040Z°%7 (14)

Fig. 9 shows the dependence of the steady-state stress o,
on the peak stress o, Through the linear fitting method,
the relationship between o, and o, can be obtained, as
follows:

o, = 0.73465, — 12.0531 (15)

Substituting the experiment data after the critical strain into
Eq.(12), and the relationship between In[(¢—¢,)/¢,] and In[~In(1
— Xoex)] can be obtained. As shown in Fig. 10, under the
condition of 250 © C/0.001 s”', the parameter n, can be
obtained from the slope of the fitting curve, and the parameter
K, can be obtained from the intercept of the fitting curve. The
calculated n, value ranges from 1.08 to 1.65, and its average
value is 1.34. The relationship between K, and Z parameter is
shown in Fig.11. It is obvious that K, can be expressed as a
function of the Z parameter, as follows:

K, =0.0040Z°"** (16)

Therefore, the constitutive equations for the AZ80

-1.2F
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=
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Fig.7 Relationship between Ing, and InZ
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magnesium alloy during the DRX stage (e>g,) can be
expressed by Eq.(17), as follows:

q
£~ &,
= - - 1- —k
Oprx = Oprv (Jsat Uss) EXp| Ty :

P
0.5
Oprv = I:O-z sat + (0-20 N 0-2 sat )e-Q«?:I
Ty = ~23.8786 + 1.44200,
o, =0.1465InZ - 22.104

Q = 68.8851270%%3! 17)
o, = 0.73460, — 12.0531

e, = 0.0058Z°77

g, = 0.0040Z°%7

K, = 0.00402°"*%

ng =134

Z = éexp(177332/RT)

3.2 Establishment of BP ANN model

Using Matlab neural network platform, the feed-forward BP
ANN model based on L-M training algorithm was used to study
the flow behavior of AZ80 magnesium alloy. The network
model consisted of an input layer, a hidden layer, and an
output layer. Among the layers, the input layer has three nodes,
which are deformation temperature 7, strain rate & and strain &
the output layer has one node, which is the flow stress o.

The operating mechanism of BP neural network model is to
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calculate the error by comparing the calculated results of feed-
forward network with the experiment values, and adjust the
mass of each neuron through BP of error for obtaining the
desired output. The process to iteratively minimize the mean
square error is called network training. The masses of the
trained network are stored and can be used to predict the
output of a given set of different inputs later.

In the ANN model, the selection of hidden layer nodes is
usually a complicated problem. If the number of hidden layer
nodes is small, the model cannot achieve the effective training
or accurately predict the specimens which are not involved in
training. If the number of hidden layer nodes is large, it will
lead to a longer learning time, even overfitting, and the error
may not reach the optimization. Therefore, there should be an
optimal number of hidden layer nodes. The formula for
selecting the number of hidden layer nodes is expressed by
Eq.(18), as follows:

k=vVm+n+a (18)
where k is the number of nodes of the hidden layer, m is the
number of neurons in the input layer, n is the number of
neurons in the output layer, and « is a constant between 1 and
10. The number of hidden layer neurons is determined by
repeated trials and error comparisons. It is found that a
network structure with 2 hidden layers of 5 and 3 neuron
nodes separately has the best prediction performance. Its
structure is 3x5x3x1, as shown in Fig.12.
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Fig.12 Structure of feed-forward ANN model for AZ80 magnesium
alloy

Among 16 groups of true stress-true strain curves, 80% data
were randomly selected as training specimens, i.e., 12 groups
of true stress-true strain curves were selected. The remaining 4
groups were used as test specimens. The training specimens of
91 were selected for each flow stress curve, and the total
number of training specimens was 1092, as shown in Table 2.
And from the 16 curves, 288 points were selected from the
true strain from 0.05 to 0.9 with strain interval of 0.05 as test
data to test the prediction ability of the BP ANN model.

According to the requirements of the network for input and
output data, if the data of different sizes act on the input nodes
of the network at the same time, the effect of small data on the
function is inevitably annihilated, resulting in the difficulties
in adjusting the masses between the hidden layer and the input
layer, and thereby affecting the convergence speed and
accuracy of the network. In order to overcome this
shortcoming, the input data should be normalized firstly, so
the input value is between — 1 and 1. Then the output data
should be denormalized. The input and output data are nor-
malized and denormalized according to Eq.(19) and Eq.(20),

as follows:
X, = (X = X)X~ Xo) (19)
X = Xy + X (X — Xo) (20)

where X is the original experimental data; X, and X are the

minimum and maximum values of specimen data,
respectively; X is the normalized data.

In this research, the training goal of the ANN model was set
as 107, and the learning rate was 0.03. Since the neural
network may not always find the appropriate mass of the
optimal solution, re-training of 30 times of the ANN model

was conducted to find the solution. After 156 iterations, the

Table 2 Selection status of training specimens and test specimens

Strain rate/s™"

Temperature/°C
0.001 0.01 0.1 1
250 Train Train Train Train
300 Train Test Train Test
350 Test Train Test Train
400 Train Train Train Train

system converges and the system error reaches the training
goal.

4 Prediction Results

The prediction results of the flow stress of two models are
shown in Fig. 13. It can be found that both models can well
predict the high temperature flow stress of the alloy. However,
the prediction accuracy of BP ANN model is obviously better
than that of the physical-based constitutive model, according
to the fact that the prediction results of ANN model are the
closer to the experiment data.

In order to evaluate the prediction accuracy of the two
models systematically, three statistical indexes, correlation
coefficient (R), AARE, and relative error (RE), were used as
the evaluation criteria for the model accuracy in this research.
R reflects the linear correlation strength between the
experiment value and the predicted value; AARE is an
unbiased statistical parameter to verify the predictability of
the constitutive model. The expressions of R, AARE, and RE

are as follows:
> - (v -7)

R

i i

AARE = iZ‘“" @D

O x 100%

i

X 100%
X
X 0

i

RE =

where X; and Y, are the experiment stress and the predicted
stress, respectively; X and Y are the averages of X, and Y,
respectively; N is the number of data points used for fitting.

Fig. 14 shows the correlation between the predicted values
and the experiment values of two models. R and AARE of the
physical-based constitutive model are 0.9936 and 4.52%,
respectively; while those of the BP ANN model are 0.9991
and 2.02%, respectively.

As shown in Fig.15, the statistical analysis of RE of the two
models shows that the range of RE between the predicted
value and the experiment value of the physical-based model is
—14%~18%, which is wider than that of the BP ANN model
(=5.5%~5.5%). Meanwhile, the number of experiment points
of RE range between - 4%~4% of the physical-based
constitutive model is 181, which is less than that of BP ANN
model (279). In summary, the prediction accuracy of the BP
ANN model is higher than the physical-based constitutive
model. The comparison results of prediction accuracy of the
two models are shown in Table 3.

5 Comparison and Discussion of Constitutive
Models

The fair prediction ability of the physical-based model is
attributed to the clear physical meaning. However, there are
many physical parameters in this model which need to be
considered, resulting in many independent parameters in the
model and the fact that the calculation process is relatively
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Fig.14 Correlations between predicted values and experiment results of physical-based constitutive model (a) and ANN model (b)
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Fig.15 Relative error RE between predicted values and experiment results of physical-based constitutive model (a) and ANN model (b)
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Table 3 Comparison of predicted and experiment values by physical-based constitutive model and BP ANN model

Number of data points in RE range

Model R AARE/% RE/%
of —4%~4%
Physical-based constitutive model 0.9936 4.52 -14~18 181
BP ANN model 0.9991 2.02 -5.5~5.5 279

complicated. In addition, there is a problem of smoothness at
the critical strain, i.e., when the values of the parameters K,
and n, are inappropriate, the flow stress curve tends to have a
sharp angle, which reduces the accuracy and practicability of
the physical-based constitutive model.

In contrast, the better prediction ability of ANN model is
attributed to its ability to deal with complex nonlinear
relationships. It can effectively and accurately predict the flow
of different
calculation process of parameters. However, it should also be

stress materials without considering the
found that the neural network model cannot provide an
accurately defined mathematical formula for subsequent finite
element simulation, and the determination of the number of
hidden layers and the number of neurons in the model is
relatively complicated. Therefore, it is necessary to determine
the optimal hidden layer structure through repeated trials and

error calculations in order to obtain the desired output.

6 Conclusions

1) The prediction ability of backpropagation (BP) artificial
neural network (ANN) model is better than that of physical-
based constitutive model.

2) The fair predictive ability of the physical-based
constitutive model is attributed to the clear physical meaning.
However, many physical parameters need to be considered in
the model,
complicated. Particularly, when the values of undetermined

and the calculation process is relatively
parameters K, and n, are inappropriate, sharp angles are prone
to appear at the critical strain in the model, thus reducing the
accuracy and practicability of the model.

3) The better prediction ability of ANN model is attributed
to its ability to deal with complex nonlinear relationships.
However, this model cannot provide an accurately defined
mathematical formula for subsequent finite element
simulation, and the determination of the number of hidden
layers and the number of neurons in the model is relatively

complicated.
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