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ARTICLE

Modelling Predication of Flow Stress and Grain Size in the 

High Temperature Deformation of Ti-6Al-2Zr-2Sn-2Mo-

1.5Cr-2Nb Alloy

Luo Jiao,    Gao Jun,    Li Miaoquan

Northwestern Polytechnical University, Xi’an 710072, China

Abstract: A Pi-sigma fuzzy neural network (FNN), in which the layers of neural networks were organized into a feed-forward 

system, was used to predict the flow stress and the grain size during isothermal compression of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb 

alloy. After the optical micrography (OM) and scanning electron microscopy (SEM) observations, the grain size of primary α phase 

was measured via a quantitative metallography image analysis software. The effect of deformation temperature and strain rate on the 

microstructure was discussed. The comparisons of the predicted flow stress and grain size for the sample data or the non-sample data 

with the experimental results were given to train the models and confirm the validity in present study. The results show that the 

accuracy of prediction from the Pi-sigma FNN models is much high, and the Pi-sigma FNN approach can efficiently describe the 

non-linear and complex relationship of titanium alloys.

Key words: titanium alloys; fuzzy neural network; microstructure; flow stress; grain size

As known, it is vital to establish the constitutive equation 

and the microstructure model so as to optimize the processing 

parameters and control the microstructure of materials. Up to 

now, the constitutive equation and the microstructure model of 

materials had been developed using the empirical or 

semi-empirical formulas

[1-3]

, artificial neural network

(ANN)

[4,5]

 and internal state variable (ISV) theory

[6,7]

. For 

instance, Zhang et al.

[8]

 established the constitutive equations 

of 34CrNiMo steel using the working hardening curve for the 

working hardening and dynamic recovery period and Avrami 

equation for the dynamic recrystallization period. Chen et al.

[9]

modeled the true stress-stain responses using the Johnson 

Cook, modified Johnson Cook, Khan-Huang-Liang, modified 

Khan-Huang-Liang models. In general, these empirical or 

semi-empirical formulas are very simple. However, if these

formulas are used beyond the experimental range for which it 

is designed, large calculated difference would arise, as 

described by Ref. [10]. In addition, these formulas can not 

represent the complicated and non-linear relationship between 

the flow stress, the microstructure and the processing 

parameters. To explore and understand the non-linear

relationship, Lin et al.

[11]

 established an internal-state-variable 

based viscoplastic constitutive equation which modeled the 

evolution of dislocation density, recrystallization and grain 

size during and after hot plastic deformation. Wang et al.

[12]

proposed the constitutive equations of Ti-7Mo-3Al-3Nb-3Cr 

alloy using dislocation density rate as an internal state variable. 

The physical based internal state variable approach provides 

the greatest potential for enhancing scientific understanding, 

and is especially suitable for representing the interactive 

relationship between the macroscopic behavior and the 

microstructure during the non-isothermal deformation process 

of materials. But, it is vital to intensively study the physical 

deformation mechanisms and confirm the appropriate internal 

state variables before establishing the internal-state-variable 

based constitutive equations. The ANN method does not need 

a mathematical formulation and has the capability of 

self-organization or “learning”; it is especially suitable for 
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treating non-linear and complex relationship

[13]

. In present 

study, a fuzzy set and ANN are coupled to develop the 

constitutive equation and the microstructure model.

Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy, named as TC21 in 

China, is a typical two phase α+β titanium alloy. The alloy has 

an excellent combination of ductility, fracture toughness and 

strength that make it to be an ideal material in aviation 

industries. In the past several years, many researchers had 

devoted to discussing the flow behavior, the microstructure 

evolution and the deformation mechanisms of this alloy

[14-18]

. 

In present study, Pi-sigma fuzzy neural network (FNN), in 

which the layers of neural networks are organized into a 

feed-forward system, is used to predict the flow stress and the 

grain size during isothermal compression of Ti-6Al-2Zr-2Sn-

2Mo-1.5Cr-2Nb alloy. The comparisons of the predicted flow 

stress and grain size for the sample data or the non-sample 

data with the experimental results are given to train the 

models and confirm the validity.

1  Experiment

The chemical composition of this alloy is as follows: 6.4 Al, 

2.8 Mo, 2.0 Nb, 2.0 Sn, 2.2 Zr, 1.6 Cr, 0.068 Si, 0.021 Fe, 0.1 

O, 0.005 C, 0.004 N and the balance Ti. The microstructure of 

as-received Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy is shown in 

Fig.1. It is observed that the microstructure is made of 

equiaxed α, lamellar α phase and a small amount of 

intergranular β phase. The β transus temperature of this alloy 

was about 1238 K

[14]

.

Cylindrical compression specimens with a diameter of 8.0 

mm and a height of 12.0 mm were cut from the Ti-6Al-2Zr-

2Sn-2Mo-1.5Cr-2Nb bar. The isothermal compression was

performed on a Gleeble-1500 simulator at the deformation 

temperatures of 1103, 1133, 1163, 1183, 1203, 1223 and 1243 

K, the strain rates of 0.01, 0.1, 1.0 and 5.0 s

-1

, and the height 

reductions of 50%, 60% and 70%. Prior to isothermal 

compression, the specimens were heated to a given tempera-

tures at a rate of 20 K/s and held for 3 min. After isothermal 

compression, the specimens were cooled in air to room 

temperature, and were axially sectioned for the microstructure

observation and the quantitative analysis. Four measurement

Fig.1  Optical micrograph of as-received Ti-6Al-2Zr-2Sn-2Mo-

1.5Cr-2Nb alloy at room temperature

points and four visual fields of each point in the different 

deformation regions were chosen. The microstructure 

observation was performed via a Leica DMI 3000M optical 

microscopy (OM). Scanning electron microscopy (SEM) were

taken with a SUPRA 55 SEM operating at 15 kV. The grain 

size of primary α phase was measured via a quantitative 

metallography image analysis software (Image-Pro Plus 6.0), 

and was calculated by the average value of sixteen visual 

fields. The selected flow stress and the grain size of primary α

phase are given in Table 1 and 2. It is observed that the flow 

stress decreases with increasing deformation temperature and 

decreasing strain rate; and the grain size of primary α phase is 

dependent on the deformation temperature, the strain rate and 

the strain. The detailed description of the flow behavior with 

processing parameters is beyond the scope of the present study,

which is found in the references [14,19].

2 Microstructure Evolution

The effect of deformation temperature on the microstructure 

at a strain rate of 5.0 s

-1

 and a strain of 0.92 is shown in Fig.2.

Table 1  Selected flow stress of the isothermally compressed

Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy

Flow stress/MPa

Strain

Strain

rate/s

-1

1103 K 1133 K 1163 K 1183 K 1203 K 1223 K 1243 K

0.01 146.12 114.97 85.02 71.33 65.70 53.78 41.80

0.1 211.85 180.40 134.10 100.40 92.26 81.90 68.17

1.0 308.81 252.85 206.70 177.67 146.88 124.71 104.40

0.1

5.0 334.46 277.39 239.42 192.79 159.37 140.05 133.03

0.01 129.69 104.45 77.87 66.29 61.52 51.22 40.04

0.1 200.35 166.38 121.83 97.04 87.21 78.06 67.59

1.0 297.30 241.17 196.47 169.27 140.63 122.16 102.65

0.2

5.0 338.55 280.90 242.48 196.15 163.53 147.08 136.54

0.01 116.54 93.93 70.71 61.25 58.06 48.67 37.71

0.1 182.28 150.02 110.58 86.96 81.66 72.95 65.84

1.0 282.51 229.48 188.29 160.87 135.77 118.96 99.73

0.3

5.0 315.27 263.37 230.21 186.91 155.90 143.88 135.37

0.01 105.04 85.75 64.57 57.05 53.90 45.47 36.04

0.1 169.13 137.17 102.40 81.08 77.49 68.48 62.92

1.0 266.08 216.63 180.11 153.31 130.22 114.49 96.22

0.4

5.0 304.32 257.53 224.08 181.03 152.43 139.41 131.87

0.01 96.83 78.74 60.48 53.59 49.74 42.28 34.29

0.1 157.63 126.65 95.25 76.04 73.33 65.28 60.58

1.0 252.94 206.11 173.98 146.59 125.37 110.65 93.89

0.5

5.0 274.19 234.16 207.72 170.95 143.41 133.66 127.78

0.01 93.54 74.07 57.42 50.33 48.35 39.72 33.12

0.1 147.77 118.47 90.13 71.00 69.17 62.09 58.25

1.0 241.43 197.93 169.89 142.39 121.90 108.10 92.72

0.6

5.0 260.49 225.98 201.58 165.07 139.94 129.82 125.44

0.01 86.97 70.56 58.44 48.65 46.97 39.13 34.88

0.1 139.55 111.46 84 65.96 67.78 60.22 57.07

1.0 233.22 192.09 165.80 138.19 117.74 105.59 93.30

0.7

5.0 241.33 210.79 190.34 157.51 133.69 126.04 123.69

Equiaxed α

Lamellar α

Transformed β matrix

20 µm
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Table 2  Comparison of the predicted with the experimental

grain size of primary α phase for the partial sampled

data

Grain size /µmDeformation

temperature/K

Strain

rate/s

-1

Strain

Experimental Calculated

Error/%

5.0 0.92 8.15 8.33 2.25

1.0 0.92 8.47 8.44 –0.35

0.1 0.92 8.39 8.35 –0.47

1103

0.01 0.92 9.32 9.36 0.42

1.0 0.69 8.10 8.09 –0.11

1.0 1.20 7.94 7.93 –0.06

1133

0.01 1.20 8.67 8.68 0.07

5.0 0.92 8.60 8.48 –1.43

1.0 0.92 8.55 8.57 0.30

0.1 0.92 8.27 8.34 0.94

1133

0.01 0.92 9.38 9.37 –0.08

5.0 0.92 7.62 7.71 1.23

1.0 0.92 7.14 7.52 5.40

0.1 0.92 7.36 7.22 –1.86

1183

0.01 0.92 7.27 7.33 0.83

From Fig.2, it is observed that the volume fraction of primary 

α phase decreases significantly with increasing deformation 

temperature because of the phase transformation from α to β. 

At 1103 K (Fig.2a), equiaxed primary α phases with a size of 

about 8.15 µm and a small amount of elongated α phase are 

observed. When the deformation temperature is 1163 K, the 

grain size of equiaxed primary α phase becomes to be about 

7.20 µm, and the microstructure has a slight oriented 

characteristic (Fig.2b). When the deformation temperature is 

in the range of 1183~1203 K, the grain size of primary α

phase decreases from 7.62 µm to 7.40 µm (Fig.2c and 2d). 

According to above-mentioned analysis, it is seen that the 

variation of grain size of primary α phase with deformation 

temperature is oscillatory. The main reason is attributed to two 

aspects. Firstly, the grain growth will occur as the deformation 

temperature increases. Secondly, the phase transformation 

from α to β will lead to the decrease of grain size. Thus, the 

combined effect of the two aspects will finally result in the 

oscillatory variation of grain size.

Fig.3 shows the effect of strain rate on the microstructure at 

a deformation temperature of 1133 K and a strain of 0.92. It is 

seen in Fig.3 that the strain rate has some effect on the 

morphology and the grain size of primary α phase. At 0.01 s

-1

, 

the microstructure is uniform and the grain size of primary α

phase is about 9.38 µm (Fig.3a). When the strain rate is up to 

5.0 s

-1

, the microstructure has an oriented characteristic

(Fig.3b), and is non-uniform with a mixed structure of 

equiaxed and elongated primary α phase. The grain size of 

primary α phase is about 8.60 µm. The main reason is that 

lower strain rate provides enough time for the grain growth 

and the globularization of primary α phase.

3  Constitutive Equation and Microstructure

Model Using FNN

In present study, a Pi-sigma FNN is used to predict the flow 

stress and the grain size during isothermal compression of 

Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy, and its characteristic is 

described as follows: (1) the activation function of the fuzzy 

subset will be revised during the training of the network;    

(2) the fuzzy predictive model will be automatically updated 

in a supervised manner. 

Fig.2  SEM microstructures of samples at different deformation temperatures, a strain rate of 5.0 s

-1

 and a strain of 0.92:

(a) 1103 K, (b) 1163 K, (c) 1183 K, and (d) 1203 K

a b

c

d

40 µm



Luo Jiao et al. / Rare Metal Materials and Engineering, 2018, 47(6): 1716-1722                    1719

Fig.3  SEM microstructure of samples at a deformation temperature

of 1133 K and a strain of 0.92 and strain rate of 0.01 s

-1

 (a),

5.0 s

-1

 (b)

The layers of neural networks in Pi-sigma FNN model are 

organized into a feed-forward system, and are shown in Fig.4

[13]

. 

It is observed in Fig.4 that the input variables of the network 

1

, ,

n

x x� are regarded as the deformation temperature, strain 

rate and strain, and so on. 

0

,

i i

n

p p�

are the weight coefficients

in the hidden layer of the network. 

i

y is the output in the 

hidden layer of the network. S and P are the addition and 

multiplication operations, respectively. Y is the final output of 

the network denoted as the flow stress or the grain size. 

The neural networks have six layers and are represented as 

follows:

(1) Layer 1: layer 1 is the input layer of the networks; its 

function is to transmit the input variables (deformation 

temperature, strain rate and strain, and so on) into the next layer.

(2) Layer 2: the fuzzy subset of input variables with large

Fig.4  Layers of neural networks

[13]

{UL}, middle {UM} and small {US} is regulated in this layer, 

and the activation function with sigmoid shape is given as 

follows: 

2

exp[ ( ) / ]

i i i

j j j j

x a bµ = − − (1)

where 

i

j

a and 

i

j

b  are the constants.

(3) Layer 3: layer 3 is the fuzzy rule layer. The total of 

fuzzy rules can be represented as: 

According to the fuzzy rule

1

R :

If x

1

is UL, x

2

is UL��, x

n 

is UL

Then 

1 1 1 1 1

0 1 1 2 2 n n

y p p x p x p x= + + + +� (2) 

1 1 1 1

1 2 n

w µ µ µ= ⋅ �

(3) 

·

·

·

And for the fuzzy rule R

m

: 

If x

1

is US, x

2

is US���x

n

is US 

Then 

0 1 1 2 2

m m m m m

n n

y p p x p x p x= + + + +�

           (4)

1 2

m m m m

n

w µ µ µ= ⋅ �

(5) 

where m is the number of the fuzzy rule. According to the 

fuzzy subset, m is equal to 3

n

; n is the number of the input 

variables. In present study, it is equal to 3 (deformation 

temperature, strain rate and strain ). 

(4) Layer 4: the multiplication operation is carried out in 

this layer, so the output 

(4th)

y of the layer is given by:

(4th)

1 1 2 2 0 1 1

( ) ( ) ( ) ( )

i i i i i i

n n n n

y x x x p p x p xµ µ µ= ⋅ ⋅ + + +� �

(6)

(5) Layer 5: the addition operation is carried out in this 

layer, so the output y

(5th)

of the layer is given by:

(5th)

1 1 2 2 0 1 1

1

[ ( ) ( ) ( ) ( )]

m

i i i i i i

n n n n

i

y x x x p p x p xµ µ µ

=

= ⋅ ⋅ + + +

∑

� �

 (7)

(6) Layer 6: the total output (

Y

) is the following equation:

1 1

/

m m

i i i

i i

Y w y w

= =

=

∑ ∑

1 1 2 2 0 1 1

1

1 1 2 2

1

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( )]

m

i i i i i i

n n n n

i

m

i i i

n n

i

x x x p p x p x

x x x

µ µ µ

µ µ µ

=

=

⋅ ⋅ + + +

=

⋅

∑

∑

� �

�

(8)

 

Moreover, an error back-propagation (BP) algorithm with a 

gradient search technique is used to train the network. The 

average squared error is given in the following equation:

2

d

1

( )

2

E y Y= −                                 (9)

where y

d

 is the experimental results.

3.1  Constitutive equation

Three inputs of the network, including deformation

temperature (T/K), strain rate (ln(ε

�

/s

−1

)) and strain (ε), are

represented as x

1

, x

2

 and x

3

, respectively. The fuzzy subset of 

three inputs with large {UL}, middle {UM} and small {US} is

shown in Fig.5. The subject functions are described as follows:

For the deformation temperature in Fig.5a:











<













−−

≥

=

1243..............

2200

)1243(

exp

1243..........................................1

)(

2

1

x

x

x

xUL

(10)

a

b

20 µm
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











−−

=

1300

)1173(

exp)(

2

1

x

xUM

(11)











>













−−

≤

=

1103...............

2200

)1103(

exp

1103..........................................1

)(

2

1

x

x

x

xUS

(12)

For the strain rate in Fig.5b:











<













−−

≥

=

60.1.................

20

)60.1(

exp

60.1...........................................1

)(

2

2

x

x

x

xUL

(13)













+−

=

7

)50.1(

exp)(

2

2

x

xUM

(14)











−>













+−

−≤

=

60.4.............

20

)60.4(

exp

60.4.........................................1

)(

2

2

x

x

x

xUS

(15)

For the strain in Fig. 5c











<













−−

≥

=

85.0................

03.0

)85.0(

exp

85.0..........................................1

)(

2

3

x

x

x

xUL

(16)













−−

=

035.0

)45.0(

exp)(

2

3

x

xUM

(17)











>













−−

≤

=

05.0...............

03.0

)05.0(

exp

05.0..........................................1

)(

2

3

x

x

x

xUS

(18)

In the study, the flow stresses of 340 groups as the sample 

data are selected to train the FNN model. Moreover, the flow 

stresses of 64 groups as the non-sample data are used to 

confirm the validity of the model. As a result, the comparisons

between the predicted and the experimental flow stress for the 

sampled and non-sampled data are shown in Fig.6 and Fig.7, 

respectively. It is seen in Fig.6 that the maximum difference 

and the minimum difference between the predicted and the 

experimental flow stress for the sample data are 11.35% and 

0.01%, respectively. From Fig.7, it is seen that the maximum

difference and the minimum difference between the predicted 

and the experimental flow stress for the non-sample data are

13.66% and 0.12%, respectively. So, the FNN model can 

efficiently predict the deformation behavior during isothermal 

compression of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy.

3.2  Microstructure model

In the microstructure model, the fuzzy subset of three inputs

with large {UL}, middle {UM} and small {US} is shown in 

Fig.8. The subject functions are described as follows:

For the deformation temperature in Fig.8a:











<













−−

≥

=

1203..............

1900

)1203(

exp

1203..........................................1

)(

2

1

x

x

x

xUL

(19)













−−

=

1300

)1153(

exp)(

2

1

x

xUM

(20)











>













−−

≤

=

1103...............

1900

)1103(

exp

1103..........................................1

)(

2

1

x

x

x

xUS

(21)

For the strain rate in Fig.8b:











<













−−

≥

=

60.1.................

20

)60.1(

exp

60.1...........................................1

)(

2

2

x

x

x

xUL

(22)













+−

=

3

)50.1(

exp)(

2

2

x

xUM

(23)











−>













+−

−≤

=

60.4.............

20

)60.4(

exp

60.4.........................................1

)(

2

2

x

x

x

xUS

(24)

For the strain in Fig. 8c:











<













−−

≥

=

20.1................

02.0

)20.1(

exp

20.1..........................................1

)(

2

3

x

x

x

xUL

(25)













−−

=

04.0

)95.0(

exp)(

2

3

x

xUM

(26)











>













−−

≤

=

69.0...............

02.0

)69.0(

exp

69.0..........................................1

)(

2

3

x

x

x

xUS

 (27)

Fig.5  Fuzzy subsets for constitutive equation: (a) deformation temperature, (b) strain rate, and (c) strain

1103            1173           1243

T/K

1

0

1

0

1

0

–4.60          –1.50           1.60

ln(ε/s

-1

)

·

a

b

c

S

M

L

S

M

L

S

M

L

0.05             0.45             0.85

ε
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Fig.6  Comparison between the predicted and the experimental flow 

stress for the sampled data: (a) 1163 K and (b) 1223 K

Fig.7 Comparison between the predicted and the experimental flow 

stress for the non-sampled data: (a) 1133 K and (b) 1183 K

Fig.8  Fuzzy subsets for microstructure model: (a) deformation temperature, (b) strain rate and (c) strain

The grain sizes of 54 groups as the sample data are  

selected to train the FNN model. Moreover, the grain sizes  

of 6 groups as the non-sample data are used to confirm    

the validity of the microstructure model. Finally, the 

comparison between the predicted and the experimental  

grain size for the partial sampled data is shown in Table 2. It 

is seen in Table 2 that the maximum difference and the 

minimum difference between the predicted and the 

experimental grain size for the sample data are 5.40% and 

–0.06%, respectively. Table 3 shows the comparison between 

the predicted and the experimental grain size for the 

non-sampled data. It is seen that the maximum difference 

and the minimum difference between the predicted and

the experimental grain size for the non-sample data are 

–13.99% and –0.68%, respectively. 

Table 3  Comparison of the predicted with the experimental

grain size of primary α phase for non-sampled data

Grain size/µm

Deformation

temperature/K

Strain

rate/s

-1

Strain

Experimental Calculated

Error/%

1133 0.1 0.69 9.41 8.75 –6.94

1133 0.01 1.20 9.12 8.39 –8.03

1163 5.0 0.92 7.20 7.94 10.33

1163 1.0 0.92 8.11 8.05 –0.68

1163 0.1 0.92 9.05 7.78 –13.99

1163 0.01 0.92 8.79 8.01 –8.92
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4  Conclusions

1) A Pi-sigma FNN model combining the fuzzy logicality 

with neural network technology can be used to predict the 

flow stress and the grain size during isothermal compression 

of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy. 

2) The comparisons between the predicted and the experi-

mental results show that the accuracy of prediction from the 

Pi-sigma FNN model is much high, and the Pi-sigma FNN 

approach can efficiently describe the non-linear and complex 

relationship of titanium alloys.
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