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Abstract: Based on the typical mesoscopic structural characteristics of metal rubber, the mesoscopic physical mechanism was 

revealed through analyzing the spatial configuration and the contact mode of wire helixes for its compression deformation process. 

The mesoscopic structure unit based on the curved beam of variable length and the model of the contact interaction between curved 

beams were proposed. Combined with the distribution law of frictional contact points, a new constitutive model of metal rubber for 

hysteresis characteristics was established, which included its basic structure parameters such as the diameter and the elastic modulus 

of wire, the diameter of wire helix, and the relative density of metal rubber. The model could describe the restoring force curves of 

metal rubber in initial loading, unloading and repeated loading phases, and theoretically explained its elastic characteristics and dry 

friction damping characteristics of multipoint contact. To verify the theory model, a comparison was made between the theoretical 

results and the experimental results for metal rubber specimens with different relative densities. The results show that theoretic 

calculations are consistent with the experimental data, which will provides a theoretical basis for predicting the stiffness and 

damping of metal rubber and guiding its design. 
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Metal rubber is a new kind of dry friction damping material 

made of wire helixes. It combines the rubber-like elasticity 

with porosity, and possesses such properties as high damping, 

great ability to absorb the impact energy, obvious resistance to 

high and low temperatures, slow aging and so on. The material 

is widely used in many fields, especially in the sophisticated 

weapon equipment and aerospace fields, and presents a broad 

application prospect 
[1-3]

. 

In recent years, in-depth researches on the mechanical 

properties of metal rubber have been carried out; however, 

because of the complexity of its internal structure and 

nonlinear property, it becomes very difficult to analyze the 

mechanical properties of this kind of material. So far, there are 

two types of theoretical models on the basic mechanical 

properties of metal rubber, that is, the mathematical models 

and the physical models. According to the macro mechanical 

properties of metal rubber, the mathematical models are 

directly introduced 
[4-7]

, which mainly include the double 

broken line, polynomial and mixed damping models. Because 

these models do not contain the basic structure parameters of 

metal rubber, they can not reasonably explain its physical 

performance of the stiffness and dry friction characteristics. 

Meanwhile, according to the structural characteristics of metal 

rubber, the approximate physical models were ascertained 
[8-11]

, 

which mainly are the small beam, micro spring and porous 

material models. To some extent, the physical models can 

explain some mechanical properties of metal rubber, and also 

approximately describe its restoring force curves, but they can 

not predict its restoring force curves of predeformations, nor 

can they estimate its mechanical parameters.  

It is clear that these models above are not perfect, and cannot 

provide a comprehensive description of mechanical properties 

of metal rubber. Therefore, it is very necessary to explore the 

physical mechanism of metal rubber further for its compression 

deformation process and to set up its high accuracy mechanical 

model. In the present paper, according to the main 



Cao Fengli et al. / Rare Metal Materials and Engineering, 2016, 45(1): 0001-0006 

2 

characteristics of mesoscopic deformation of metal rubber, the 

curved beam unit, whose length is related with the deformation 

history of metal rubber, was put forward, and combined with the 

distribution law of frictional contact points, a new constitutive 

model of metal rubber was established, so as to more fully 

reflect the mechanical properties of metal rubber. 

1  Hysteresis Characteristics of Metal Rubber 

The static hysteresis loops of metal rubber subjected to 

compressing loads are given in Fig.1, among which the large 

hysteresis loop is the loading and unloading process at the 

maximal displacement, and the small hysteresis loops are the 

loading and unloading process at arbitrary boundary point of 

the large hysteresis loop. The area of loading and unloading 

curves is power consumption of the friction within a cycle, 

and if the frictional influence is not taken into consideration, 

the loading curve and the unloading curve will overlap for the 

elastic force curve. Through the analysis above, metal rubber 

possesses mechanical properties of nonlinearity and 

asymmetry, which can be observed. Therefore it will be very 

difficult to describe its mechanical properties accurately. 

For the large hysteresis loop of metal rubber, a simple 

mechanical model was put forward in Ref. [11], as shown in 

Fig.2. In this model, the hysteretic restoring force of a cycle is 

decomposed into a nonlinear elastic force and a nonlinear 

frictional damping force. The large hysteresis loop is 

expressed as follows: 

m e f e

m e f e

(1 )

(1 )

    

    

    


    

                        (1) 

where, m   is the loading curve, m   is the unloading curve, 

e  is the nonlinear elastic force,   is the proportionality 

constant, and f  is the nonlinear frictional damping force. 

This model is an approximate description of the large 

hysteresis loop in perfect state, that is, the contact point 

number of metal rubber is constant, and when the direction of 

friction force is changed, the entire contact points slide in 

opposite directions at the same time. It can not reflect the 

mechanical properties of the large hysteresis loop in the 

transition phase from loading to unloading, nor can it describe 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Trial curves of metal rubber 

 

 

 

 

 

 

 

 

 

 

 

Fig.2  Large hysteresis loop of metal rubber 

 

the fundamental characteristic the friction of which depends 

on deformation amplitude. Otherwise, it cannot describe the 

small hysteresis loop in a reasonable manner, neither can 

predict the small hysteresis loop theoretically. Therefore, in 

the present paper, based on the simple model above, the 

hysteresis characteristics of metal rubber will be explored 

further. 

2  Deformation Analysis of Metal Rubber for Me- 

soscopic Structure 

2.1  Mesoscopic deformation model of metal rubber  

According to the preparation technology of metal rubber, in 

its forming process, because of the extruding and embedding 

between wire helixes, they are divided into multi-segment 

curved beams by contact points, as is shown in Fig.3. The 

curved beams are mutually overlapped and connected together, 

and the mechanical properties of metal rubber are determined 

by elastic force of their deformation and interaction force 

between them 
[12]

. 

Because it is difficult to accurately ascertain the inner 

interactive force of metal rubber under the actual conditions, it 

is necessary to establish a deformation model of its meso- 

scopic structure, which can accurately simulate the interactive 

mechanism between curved beams in a certain proportion. 

Therefore, combined with the mesoscopic deformation mecha- 

nism of metal rubber, a mesoscopic deformation model is 

established, in which a single-turn wire helix is regarded as 

the mesoscopic structure unit of metal rubber, and according 

to a certain combination rule, metal rubber is equivalent to a 

 

 

 

 

 

 

 

 

 

 

Fig.3  Partial enlarged drawing of metal rubber (×50) 
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compound of multiple single-turn wire helixes, which are 

composed of curved beams divided by sliding contact points. 

Its deformation process under compression is regarded as the 

process where the number of contact points increases and the 

length of curved beams decreases gradually. In this model, the 

length change of curved beams mainly changes the stiffness 

characteristics of metal rubber, and the number of contact 

points mainly changes its damping characteristics. In the 

following analysis, its constitutive model will be established 

based on the mesoscopic deformation model. 

2.2  Deformation analysis of curved beam 

According to the deformation characteristics of wire helixes 

and the contact state of curved beams, the influence of spiral 

angle is ignored, and the curved beam is simplified to the 

circular arc. In the global coordinate system oxyz and the local 

coordinate system oabc, the force diagram of the curved beam 

is established, as is shown in Fig.4. The curved beam with the 

diameter D is located in the plane ab, and the orientation angle 

is α, which is an angle between the plane of the curved beam 

and the loading direction z. Point A of the curved beam is the 

fixed point, and the contact force Fc is applied to point B 

along the direction c. 

Based on the knowledge of structural mechanics 
[13]

, the 

stiffness of the curved beam in direction c is expressed as 

follows: 
4

1

3

π
( )

8
c

Ed
k θ

D
                                (2) 

3 1
( ) 2 2sin 2sin sin2

2 4
θ θ θ θ θ θ 

 
     

 
 

where (0<θ<2π) is the polar angle of the curved beam, E is the 

elastic modulus of wire,  is the poison’s ratio of wire and d is 

the diameter of wire. 

Through the Matlab software, () is solved and fitted, and 

it will be further simplified as: 

3

1
( )θ

 



                                (3) 

where  and  are the constants, and their values are related 

with . 

Because the length of the curved beam is generally less than 

0.8 loop 
[14]

, the influence of  is small and can be ignored. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Force diagram of curved beam 

Substituting Eq.(3) into Eq.(2), kc is expressed as follows: 
4

3

3

π

8
c

Ed
k θ

D

                                 (4) 

Substituting the length /2l D  of the curved beam into 

Eq.(4), kc is expressed as follows: 
4

3π

64
c

Ed
k l

                                  (5) 

According to the research results in Ref.[15], the model of 

contact interaction of the curved beam AB is established at the 

contact point B, as is shown in Fig.5. The curved beam AB is 

simplified as the straight beam in the model, and its length is 

the distance between both ends of the curved beam. The 

equivalent stiffness and orientation angle  of the straight 

beam are the same to that of the curved beam, and another 

curved beam BC which is contacted with AB is simplified as 

the rigid rod in parallel to the loading direction z. The straight 

beam and the rigid rod interact at the contact point B in the 

normal direction. 

According to Fig.5, the elastic force of the curved beam in 

the direction z is expressed as follows: 

Fz=Fcsin                                     (6) 

During deformation process of the curved beam, the contact 

point moves from point B to point B′, and according to the 

displacement relationship of BB′ and BB″, Fc is expressed as 

follow: 

Fc=kcΔzsin                                   (7) 

where Δz is the displacement of the loading direction z. 

By Eqs.(6) and (7), the equivalent stiffness of the elastic 

force of the curved beam in the direction z is expressed as 

follows: 

Kz=Kcsin
2
                                    (8) 

2.3  Equivalent stiffness of wire helix  

If the length of the curved beam is l, the number of the 

curved beams contained in single-turn wire helix is defined as 

follows: 

π /D l                                        (9) 

Then, the equivalent stiffness of the elastic force of the wire 

helix in the direction z is expressed as follows: 

Kd=  kz                                      (10) 

During deformation process of metal rubber, the length l of  

 

 

 

 

 

 

 

 

 

 

 

Fig.5  Model of contact interaction of curved beam 
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the curved beam decreases with the increase of strain , and l 

is related with  linearly
 [15]

. l is expressed as follows: 

0(1 )l l b -                                   (11) 

where l0 is the initial length of the curved beam, and b is the 

proportional coefficient. 

By Eqs.(5) and (8)  ~ (11), kd is expressed as follows:           
2 4 2

4

d 4

0

π sin
(1 )

64

EDd
k b

l

 
                  (12) 

3  Stress- Strain Relation of Metal Rubber 

3.1  Elastic force of metal rubber 

To assess the mechanical properties of metal rubber, a 

representative unit body is taken out. It is supposed that there 

are n single-turn wire helix units in per unit area, and m layers 

wire helix units in per unit length. They are of parallel 

relationship in each layer and tandem relation between the 

layers 
[8]

. At the strain for , the equivalent stiffness of elastic 

force of metal rubber ke can be obtained with Eq.(13). 

e d

n
k k

m
                                    (13) 

If MRρ  is the density of metal rubber and  is the density 

of wire, the quantity MV of wire helix in volume V is given by 

Eq.(14). 

MR
V 2 2

4

π

V
M

Dd


                                  (14) 

where MR MR    is the relative density of metal rubber. 

By Eq.(14), the quantity of wire helixes in the unit body is 

given by Eq.(15). 

MR

2 2

4

π
M

Dd


                                                      (15) 

By Eqs.(12), (13), (15) and 0 πl D (   is for the 

proportion factor, 0  ) assumed, ek is expressed as follows: 

1/3
10

4

e MR (1 )
d

k aE b
D

  
  

   
   

                 (16) 

where 16 3 8 3 4 22 π sina     . 

Thus the relationship between the elastic stress and the 

strain of metal rubber is expressed as follows: 

1/3
10

4e
MR

d
(1 )

d

d
aE b

D


 




  

   
   

               (17) 

The Eq.(17) integrated, the content in the bracket is 

developed into a multinomial, and meanwhile, the high-order 

quantity is ignored. The integral constant is determined by 

0   and e 0  , thus e  can be expressed as follows: 

1/3
10

3

e MR (1 )
d

aE b
D

   
  

   
   

               (18) 

3.2  Hysteretic restoring force of metal rubber  

The hysteretic restoring force of metal rubber contains two 

parts, that is, the elastic force and the damping force. The 

damping force of metal rubber is mainly produced from the 

friction between contact points, and its value is correlated with 

the number of contact points. In order to grasp the internal 

damping of metal rubber more accurately, it is necessary to 

use a quantitative description for internal contact points on 

physical nature. If the contact points with the friction force is 

seen as to satisfy Poisson distribution in three-dimensional 

space, and the angles between wires and vector directions of 

friction forces are independent and in random
[16]

, and as well 

as the cyclic process of loading and unloading of metal rubber 

can be seen as process which can increase the loading phase in 

optional modes, as is shown in Fig.6, and continuously change 

the number of contact points, the proportion relations between 

number of contact points with friction effect and total number 

of contact points in the initial loading phase AB, unloading 

phase BC and repeated loading phase CD are as follows: 

( 1)

1 1 e
u                                    (19) 

B( 1) ( )

2 1 B( ) 2 1 e
u          

 
                   (20) 

C( 1) ( )

3 2 C( ) 2 1 e
u          

 
                   (21) 

where  is the proportion coefficient related with the contact 

points. u is associated with the loading and unloading phases, 

in the loading phase u=1, unloading phase u=2. 

According to Eqs.(1) and (18) ~ (21), the friction damping 

force of metal rubber is obtained by Eq.(22). 
( )

f e

i

i                                     (22) 

Based on Eqs.(18) and (22), the hysteretic restoring force of 

metal rubber in the initial loading, unloading and repeated 

loading phases can be established by Eq.(23). 

 ( )

e f e 1i

i i                              (23) 

where the values of i =1, 2, 3, which represent the initial loading, 

unloading and repeated loading phases of the curves, respectively. 

Eq.(23) is the constitutive model of metal rubber, which can 

reflect the effects of basic structural parameters such as the 

diameter d, the elastic modulus E, the relative density MR , 

and the orientation angle  and so on. In the formula, the 

parameters a, b,  and  can be obtained by the least squares 

fitting based on the unloading and loading test data of the 

large hysteresis loop. 

4  Metal Rubber Test and Model Validation 

4.1  Test equipment and specimens 

Jinan Tianchen WDW-T200 electronic universal testing 

 

 

 

 

 

 

 

 

 

Fig.6  Cyclic process of loading and unloading of metal rubber 
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machine (Fig.7a) was used in the present experiment. The 

austenitic stainless steel wires with the 0Cr18Ni9Ti brand 

were used as metal rubber specimens, and their parameters 

were the wire diameter d = 0.3 mm, the density  =7.9 g/cm
3
, 

the elastic modulus E=210 GPa, and the diameter D=3.2 mm. 

To verify the model, two metal rubber specimens with 

different relative densities were made (Fig.7b), and their 

relative densities are 0.29 and 0.35. 

4.2  Test and verification 

Substituting the experimental data of the loading and 

unloading of the large hysteresis loop of metal rubber specimens 

into the Eq.(23), the parameters a, b,  and  are obtained by the 

least squares fitting. The comparison between the theoretical 

results and the experimental results is shown in Fig.8.  

The curve ADA is the fitting result of the large hysteresis 

loop, and the curves BFB and CEC are the results of theoretical 

 

 

 

 

 

 

 

 

 

 

Fig.7  Pictures of testing machine and specimens: (a) testing 

machine and (b) metal rubber specimens 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8  Comparison of theoretical results and experimental results:   

(a) relative density for 0.29 and (b) relative density for 0.35 

prediction of the small hysteresis loops under different 

predeformations. From the curve ADA, it can be seen that the 

fitting result of the large hysteresis loop of the model is 

coincided basically with the experimental data, and it reflects 

the mechanical properties of the transition phase of the large 

hysteresis loop perfectly. From the curves BFB and CEC it 

can be seen the model has a good prediction for the small 

hysteresis loops, and the model reflects the deformation trend 

of the small hysteresis loops under different predeformations. 

The result shows that the theoretical model can describe the 

hysteresis characteristics of metal rubber. It should be pointed 

out that the deformation range of metal rubber for the large 

hysteresis loop should be as broad as possible to expand the 

fitting range, so as to effectively improve prediction precision 

of the small hysteresis loops. 

5  Conclusions 

1) The elastic deformation of curved beams and the friction 

damping between contact points are the essential causes of 

hysteresis characteristics of metal rubber. 

2) The constitutive model of metal rubber can be estab- 

lished based on the hysteresis characteristics. The model 

contains basic structural parameters of metal rubber, and it is 

of guiding significance for its design. 

3) The experimental results of metal rubber are in confor- 

mity with the theoretical results. The model can accurately 

predict the curves of hysteretic restoring force of metal rubber 

under different predeformations. 
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基于细观力学方法的金属橡胶迟滞特性本构模型 

 

曹凤利，白鸿柏，李冬伟，任国全，李国璋 

(军械工程学院，河北 石家庄 050003) 

 

摘  要：依据金属橡胶典型细观结构特征，对金属橡胶压缩变形金属线匝的空间位形和接触模式进行了分析，揭示了金属橡胶变形的细

观物理机制。提出了基于变长度曲梁的细观结构单元以及曲梁间的接触作用模型，结合摩擦接触点分布规律，建立了包含金属丝直径、

金属丝弹性模量、螺旋卷直径、金属橡胶相对密度等基本结构参数的金属橡胶迟滞特性本构模型，实现了金属橡胶初始加载、卸载和重

复加载过程恢复力曲线的描述，从理论上解释了金属橡胶的弹性性能和多点接触的干摩擦阻尼特性。通过不同相对密度金属橡胶试件对

所建模型进行试验验证，发现理论预测和试验结果基本一致，为金属橡胶刚度和阻尼的预估以及产品的设计提供了理论依据。 

关键词：金属橡胶；力学特性；阻尼材料；曲线梁 
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