Mo 元素掺杂对氧化铝基陶瓷/金属复合材料微观形 貌及介电性能的影响

张 $= \frac{1}{2}, \pm \frac{1$

(1. 西安交通大学 金属材料强度国家重点实验室,陕西 西安 710049)(2. 西安交通大学 电力设备与电气绝缘国家重点实验室,陕西 西安 710049)

摘 要:采用粉末冶金法制备了 Mo 掺杂的 Al₂O₃基陶瓷/金属复合材料(Al₂O₃/Mo),利用 X 射线衍射、扫描电镜等测 试分析方法研究了 Mo 掺杂对复合材料微观形貌及介电性能的影响。结果表明:Al₂O₃/Mo 复合材料主要由 Al₂O₃相和 Mo 相组成,未出现新相。Mo 主要分散在 Al₂O₃晶界,并且随着 Mo 掺杂量的增加,Al₂O₃晶粒尺寸逐渐减小、材料气 孔率逐渐增加。当 Mo 掺杂量小于 20%(质量分数)时,复合材料电阻率(>10¹² Ω·cm)与相对介电常数(8~9)没有明 显变化;而当 Mo 掺杂量大于 20%, Mo 由弥散相转变为连续相,复合材料的体电阻率急剧下降到 10¹⁰ Ω·cm;当 Mo 掺 杂量达到 40%时,由于复合材料中 Mo 已经形成连续的贯穿网络,体电阻率下降趋势减缓,稳定在 10 Ω·cm 左右。因 此,通过调控 Al₂O₃基体中的 Mo 掺杂量及相分布,可以制备出具有不同电阻率的陶瓷/金属复合材料。

关键词: 陶瓷; 钼掺杂; 介电性能

中图法分类号: TB333

文章编号: 1002-185X(2016)10-2583-04

在超/特高压直流输电的变频设备及静止型动态无 功功率补偿设备(static var compensator, SVC)的整流 逆变装置中,大功率电阻元器件都是不可缺少的关键部 件,有着广阔的应用前景。然而随着设备的小型化与高 功率化,目前使用的线绕电阻等越来越不能满足要求, 急需开发一种新型的、紧凑型的特大功率(1kW 以上) 电阻元件且需要满足线性伏安特性、高温使用、易于与 金属焊接、易于散热等特性要求。

文献标识码: A

目前,电力设备中使用的特大功率电阻元件,因为 散热问题,一般体积庞大,多为线绕电阻。国内外未见 有紧凑型特大功率电阻元器件(>1 kW)的报导。对于 紧凑型大功率电阻所用材料,氧化锌(ZnO)线性电阻 目前己可达到 500 W,但功率进一步提升十分困难。此 外,ZnO 线性电阻材料与金属的焊接工艺也不是十分 成熟,因而限制了其使用^[1]。而一般其他的陶瓷复合导 电材料如碳化硅(SiC)、氧化铝(Al₂O₃)、石墨等,又 无法满足线性伏安特性、高的使用温度(最高 500 ℃) 和易于与金属焊接等技术要求^[2,3]。

导电金属陶瓷具有线性伏安特性、可在高温使用、 易于与金属焊接、易于散热等特性,因此可作为特大功 率电阻元件使用。常用的导电金属陶瓷以 Al₂O₃ 基为 主。在现有 Al₂O₃ 陶瓷的金属化工艺中,钼(Mo)掺 杂得到了广泛的应用。Al₂O₃ /Mo 复合材料与金属焊接的工艺成熟,易于利用现有的设备与工艺进行焊接。从目前对于 Al₂O₃ /Mo 复合材料的报导来看,基本上只是将其作为抑制真空沿面闪络电介质材料进行使用,且金属 Mo 的掺入量只有不到 10%^[4-6],而其作为电阻材料使用的报道较少。作者的前期研究表明,当 Al₂O₃ 的含量超过 30%时,其可以作为提高金属 Mo 电阻率的添加剂来精确控制复合材料的电阻率^[7]。由于其导电机制为贯通的金属导电通路,其导电机制与金属是相同的,因而能够保证线性伏安特性。

本实验首先采用粉末冶金法制备 Mo 掺杂的 Al₂O₃ 基陶瓷/金属复合材料(Al₂O₃/Mo),重点研究 Mo 掺杂 对复合材料微观形貌和介电性能的影响。所获结果将 为制备特大功率电阻元件提供有益的参考。

1 实 验

采用烧结法制备 Al₂O₃/Mo 复合材料。所用原料皆 为分析纯,试剂样品编号及成分配方如表 1 所示。

按配方称量后,在球磨机中以玛瑙球研磨 24 h 充 分混料,随后加入 8% (质量分数)的 PVA 进行造粒, 在 200 MPa 的压力下进行压片 (*Φ*30 mm)。400 ℃排 胶 24 h 后,在 1550 ℃烧结,保温 2 h。为防止高温下

收稿日期: 2015-10-09

基金项目:国家自然科学基金(51272208);新世纪优秀人才支持计划(NCET-12-0454);陕西省青年优秀人才计划(2013KJXX-50) 作者简介:张 吴,男,1984年生,博士,西安交通大学材料科学与工程学院,陕西西安710049, E-mail:zhizhi3678@163.com

Mo 氧化,样品在氮气气氛中进行烧结。

烧结后的样品经过磨光、清洗、干燥处理后进行 测试。陶瓷的实际密度通过阿基米德法测量,相组成 通过 D/MAX-2400 X 射线衍射仪(XRD)分析,微观 形貌通过 TESCAN vega3 扫描电镜(SEM)观察,电 阻率通过 Agilent 4339B 高阻仪测量,介电常数通过 Hioki WY2855 LCR 测试仪测量。

2 结果与分析

图 1 为 Mo 掺杂氧化铝基陶瓷/金属复合材料的 XRD 图。从图中可以看出,复合材料由 Al₂O₃ 相 (01-075-0782)和 Mo 相(00-004-0809)组成,并没 有其他新相生成。同时,随着 Mo 掺杂量的增加,其 衍射峰逐渐增强。

图 2 为 Mo 掺杂氧化铝基陶瓷/金属复合材料的 SEM 背散射电子照片。由于 Mo 的原子序数与 Al₂O₃ 陶瓷中各组分元素相差较大, 通过背散射电子成像, 原子序数越大则衬度越明亮,因此可以明显地分辨出 陶瓷与金属相。通过图 3 的 EDS 线扫描分析可知,图 2 中白色颗粒为 Mo 相。

从图 2 可以看出, Mo 主要分散在陶瓷的晶界, 并且随着 Mo 掺杂量的增加, Al₂O₃ 晶粒尺寸有所减 小。这是因为微米级 Mo 弥散在复合材料内部,阻碍 了陶瓷晶粒的发育。随着 Mo 掺杂量的增加,在复合

表 1 样品编号及成分配方

1 1 14

Table 1 Sample number names and compositions $(\omega/76)$				
Sample No.	Al_2O_3	CaO	SiO ₂	Mo
1	96.0	0.6	3.40	0
2	93.1	0.58	3.30	3
3	91.2	0.57	3.23	5
4	89.3	0.56	3.16	7
5	86.4	0.54	3.06	10
6	76.8	0.48	2.72	20
7	67.2	0.42	2.38	30
8	57.6	0.36	2.04	40

图 1 Mo 掺杂氧化铝基陶瓷/金属复合材料 XRD 图谱 Fig.1 XRD patterns of Mo doped Al₂O₃ ceramic/metal composites

图 2 Mo 掺杂氧化铝基陶瓷/金属复合材料 SEM 背散射电子照片 Fig.2 SEM images of Al₂O₃ ceramic/metal composites doped with different Mo content: (a) 0%, (b) 5%, (c) 10%, (d) 20%, and (e) 40%

材料烧结过程中容易形成稳定的晶界,有利于晶界扩散的进行,一定程度起到了细化晶粒的作用。而当 Mo 掺杂量大于 10%之后,大量的 Mo 颗粒阻碍了 Al₂O₃基体的致密化,从而在复合材料内部形成了较多 的空隙,导致陶瓷复合材料的密度有所下降^[8]。从图 2 中还可以看出,随着 Mo 掺杂量的增加, Mo 逐渐从弥 散状转变成连续相,与文献[9]报道一致。

图 4 为 Mo 掺杂氧化铝基陶瓷/金属复合材料的 Mo 含量与相对密度的关系。可以看出,当掺杂量低 于 10%时,复合材料的相对密度下降较慢,仍能达到 90%左右。而当掺杂量大于 10%时,相对密度明显下 降,这与图 2 中 SEM 分析结果一致。

图 5 为 Mo 掺杂量对 Mo 掺杂氧化铝基复合材料 电阻率与介电常数的影响关系曲线。从图中可以看出, 随着掺杂量的增加,材料的电阻率和介电常数在 Mo 含量低于 10%时没有明显变化,证明此时 Mo 尚未形 成贯穿通路,而少量的 Mo 分散在晶界(图 3b),引 起材料内部电场畸变,极化状态发生改变,导致复合 材料的介电常数有所增加。当 Mo 掺杂量大于 30%时, 贯穿通路已经形成,电阻率急剧下降,导致介电常数 也急剧上升。当掺杂量增加到 40%之后,陶瓷的电阻 率已经接近金属,因此介电常数已经没有意义。

Fig.3 SEM image (a) and EDS line scanning analysis cross line A (a) for sample 7

图 4 Mo 掺杂氧化铝基陶瓷/金属复合材料的相对密度

Fig.4 Relative density of Mo doped Al₂O₃ ceramic/metal composites

图 5 Mo 掺杂氧化铝基陶瓷/金属复合材料的电阻率与介电常数

Fig.5 Resistivity ρ and permittivity ε of Mo doped Al₂O₃ ceramic composites

对于特大功率电阻元件而言,通过对 Mo 掺杂量 的调整,可以获得电阻率在 10~10¹² Ω·cm 的陶瓷基复 合材料,并且由于 Al₂O₃ 陶瓷具有抗热震、耐腐蚀、 机械性能优良等特点,因此 Al₂O₃/Mo 复合材料可以作 为特大功率电阻元件材料得到广泛的应用。但当 Mo 掺杂量在 30%左右时,电阻率变化十分敏感,易发生 突变,因此还需要进一步研究以提高电阻率的可控性。

3 结 论

1) 通过粉末冶金法制备了 Mo 掺杂 Al₂O₃ 基复合 材料,其组成相为 Al₂O₃和 Mo,没有新相生成。

2) Mo 主要分散在 Al₂O₃ 晶界,并且随着 Mo 掺杂 量的增加, Al₂O₃ 晶粒尺寸逐渐减小、材料气孔率逐渐 增加。

3) 当 Mo 掺杂量低于 20%时, 复合材料电阻率

(>10¹² Ω·cm)和介电常数(8~9)没有明显变化;当 Mo 掺杂量超过 20%时,由于 Mo 由弥散相转变为连 续相,复合材料的电阻率急剧下降(<10¹⁰ Ω·cm),具 有了一定的导电性;而当 Mo 掺杂量达到 40%时,由 于 Mo 已形成贯穿的连续相,成为了导体材料(<10 Ω·cm),其电阻率不再大幅变化。

参考文献 References

- [1] Li Shengtao. Materials Letters[J], 2005, 59(2-3): 302
- [2] Lv Zhenlin(吕振林). Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2003, 32(7): 534
- [3] Zhang Chengyu(张程煜). Rare Metal Materials and

Engineering(稀有金属材料与工程)[J], 2009, 38(3): 488

- [4] Chang Chun(常春). Journal of the Chinese Ceramic Society (硅酸盐学报)[J], 2008, 36(8): 1124
- [5] Chen Chuang(陈 闯). The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2013, 23(10): 2817
- [6] Liu Kaiqi(刘开琪). Rare Metal Materials and Engineering(稀 有金属材料与工程)[J], 2007, 36(8): 238
- [7] Jin Haiyun(金海云). China Patent, 201310237907.5[P]. 2013
- [8] Hussain S. Journal of the European Ceramic Society[J], 2003, 23: 315
- [9] Zhang Huijun(张会军). Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2007, 36(8): 282

Influence of Mo Doping on the Microstructure and Dielectric Property of Alumina Ceramic/Metal Composites

Zhang Hao¹, Shi Zhongqi¹, Hu Mengshan², Zhang Peng², Jin Haiyun², Qiao Guanjun¹, Jin Zhihao¹

(1. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China)

(2. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: Mo-doped alumina (Al₂O₃/Mo) ceramic composites were prepared by a powder metallurgical process. The influence of Mo doping amount on the microstructure and dielectric properties of the composites were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and other testing analysis methods. The results show that the composites are composed of Al₂O₃ and Mo phases, and no new phases appear. Mo mainly disperses in the Al₂O₃ grain boundary. With increasing the Mo content, Al₂O₃ grain size declines and the porosity increases gradually. When the amount of Mo is below 20 wt%, there are no obvious changes in resistivity (>10¹² $\Omega \cdot cm$) and in permisittvity (8~9) for the composites. When the doping amount is over 20 wt%, Mo transforms from the dispersed phase into the continuous phase while volume resistivity decreases to 10¹⁰ $\Omega \cdot cm$ sharply. When the doping amount is 40 wt%, since the throughout matrix of Mo is formed, the volume resistivity decreases slowly, and becomes steady at about 10 $\Omega \cdot cm$. Therefore, ceramic/metal composite materials with different resistivities can be prepared by adjusting the amount and phase distribution of Mo in Al₂O₃ matrix. **Key words:** ceramics; molybdenum doping; dielectrical properties

Corresponding author: Jin Haiyun, Ph. D., Associate Professor, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China, E-mail: hyjin@mail.xjtu.edu.cn