CeO₂对铝合金表面激光熔覆增材制造 Ni60 合金层 组织及耐蚀性影响

王成磊,高原,张光耀

(桂林电子科技大学,广西 桂林 541004)

摘 要:利用激光增材制造技术,在 6063AI 基体表面制备了添加不同含量 CeO₂ 的 Ni60 合金层,并通过金相显微镜、 XRD、SEM 和电化学腐蚀测试仪等设备进行了分析和测试,研究稀土 CeO₂ 对 6063AI 表面激光增材制造镍基合金层与 基体结合界面处的组织结构及耐腐蚀性能的影响。结果表明,在表面形貌上,4%~5% CeO₂ (质量分数,下同)的合 金层形貌最好,CeO₂含量低于 3%时难以获得表面良好的合金层,CeO₂含量在 5%~10%时,合金层表面气孔、脱落等 缺陷较少;在截面形貌上,合金层中 CeO₂含量在 0%~2%时易出现裂纹,含量在 5%~10%时主要缺陷为气孔, 4%CeO₂+Ni60 合金层中无明显气孔和裂纹,具有相对较好的截面形貌;添加 4%CeO₂ 可以改善Ni60 合金层的组织结构, 促进合金层的晶粒细化和组织分布均匀;添加不同含量 CeO₂ 可以改善铝合金表面 Ni60 合金层的组织形貌,较佳的稀 土添加量是 4%CeO₂;在1 mol/L H₂SO₄中,CeO₂+Ni60 合金层的耐腐蚀性能是 Ni60 合金层的 4.23 倍;在 3.5% NaCl 溶液中,CeO₂+Ni60 合金层耐腐蚀性能是 Ni60 合金层的 1.43 倍;在1 mol/L NaOH 溶液中,CeO₂+Ni60 合金层的耐腐 蚀性是 Ni60 合金层时 1.42 倍。

关键词:	激光增	射材制造;	铝合金;	氧化铈;	镍基;	耐腐蚀
中图法分	▶类号:	TG146.1	+5	文献标i	识码: /	A

增材制造(additive manufacturing, AM)技术^[1-5] 被誉为有望产生"第三次工业革命"的代表性技术, 是大批量制造模式向个性化制造模式发展的引领技 术。Ni60合金由镍、铬、硼、硅等元素构成,具有较 好的耐腐蚀、耐磨损和抗氧化性能,是自熔性合金中 应用最广泛的一种。铝作为轻量化的首选材料,在铝 基体上进行激光增材制造对于实现结构整体化具有重 要的研究价值。但由于 Ni 基熔覆材料与铝合金基材的 物理性能和化学成分的差异,加上激光加工的快速凝 固作用,合金层中常存在大量的气孔、裂纹^[6,7]。稀土 元素可以改善熔池流动性,优化合金层组织结构,有 利于消除组织中的气孔、裂纹^[8-10]。本工作主要研究 获得一层镍基合金后, CeO2对 6063Al 表面 Ni60 合金 层与基体结合界面的组织结构及耐腐蚀性的影响,探 讨稀土 CeO₂ 的作用效果和机制,为激光增材制造后 续研究提供有力的技术支撑。

1 实 验

实验选用 6063Al 作为基材,尺寸 60 mm×80 mm×8

文章编号: 1002-185X(2017)08-2306-07

mm,其化学成分为(质量分数,%):Si0.5,Fe0.35,Cu0.10,Mn0.10,Mg0.45~0.9,Cr0.10,Zn0.10,Ti0.15,Al余量。粉末材料选用Ni60合金与稀土CeO₂粉末的混合物,CeO₂纯度≥99.99%,粉末粒度约为20~60 μm,Ni60粉末的粒度为35~100 μm,化学成分(质量分数,%):C0.7~1.0,Si3.5~3.5,Fe3.5~5.0,B3.5~4.5,Cr15~20,Ni余量。粉末中CeO₂的含量(质量分数,下同)及试样编号见表1。

首先,采用机械和化学混合方法消除 6063Al 表面 的氧化膜,具体工艺路线: 6063Al 表面细砂纸打磨-化学试剂(8%的盐酸)腐蚀-清水清洗-丙酮清洗-烘干。 在 Ni60 合金粉末中加入一定比例的 CeO₂(见表 1)

表 1 CeO₂含量及试样编号

Table 1 Samples number and CeO_2 contents of coating

powders (ω/%)										
Sample	1#	2#	3#	4#	5#	6#	7#	8#	9#	10#
CeO ₂ content	0	0.5	1	2	3	4	5	6	7	10

收稿日期: 2016-08-18

基金项目: 国家自然科学基金 (51201043); 广西自然科学基金 (2015GXNSFBA139214); 桂林电子科技大学研究生教育创新计划 (YJCXB201501); 广西信息材料重点实验室重点项目 (1210908-214-Z); 广西信息材料重点实验室项目 (151018-Z)

作者简介: 王成磊, 男, 1985 年生, 博士生, 讲师, 桂林电子科技大学, 广西 桂林 541004, E-mail: clw0919@163.com

制备 Ni60-CeO₂ 混合粉末,将 10 种不同混合粉末经球 磨充分混合后备用。工艺试验采用 GS-TFL-6000 型 6 kW 大功率激光设备,整个激光增材制造在自制的氩 气保护装置内进行 (如图 1 所示),内部放置烘干的铝 合金基材,激光处理过程在 Ar 气的保护氛围中进行, 以防止熔池的吸氧和合金的氧化。激光工艺参数为: 功率 4000 W,光斑直径 6 mm,扫描速度 600 mm/min。

采用同步送粉装置边喷粉边熔覆,实现逐层激光 熔覆,每层厚度在 800~1000 μm,最终得到三维金属 零件。在相同工艺条件下,实验中同时制备了 10 种不 同 CeO₂含量的合金层试样,以便进行对比研究。

实验用 Canon650D 数码相机观察熔覆一层宏观 形貌;用 ZEISS AXIO 型金相显微镜、日本 JEOL/JSM-5610LV 扫描电镜分析合金层的表面形貌 和截面形貌;用 Bruker-axs-D8型X射线衍射仪检测 合金层相结构;用 PS-268A型电化学测量仪测试耐腐 蚀性。

2 结果与分析

2.1 合金层表面形貌

图2是添加不同含量CeO2的Ni60合金层的表面形 貌,为1#~10#试样涂层激光熔覆一层后的表层组织。 图2a中未加入CeO2的Ni60合金层表面出现"液滴"状 熔凝组织和较大的气体溅射孔洞,合金层起伏较大, 粗糙度高,并出现崩损脱落;图2b~2e为加入0.5%~ 3% CeO₂的Ni60合金层,合金层表面较平整,无"液 滴"和较大溅射孔洞,但具有不同程度的组织脱落; 当加入稀土氧化物的质量分数为4%~10%时,Ni60合 金层的表面平整,起伏较低,有明显的激光熔覆扫描 搭接线,未出现"液滴"状的涂层熔凝组织和气体溅 射孔洞,无组织崩损脱落。故加入0.5%~3% CeO2可 以改善Ni60合金层表面粗糙度,降低表面起伏和熔池 溅射气孔出现的概率,但由于合金层中的稀土含量较 低,组织形貌仍然比较差,甚至出现表层的大块脱落 (如图2d),即Ni60合金层中CeO2含量低于3%时难以 获得表面良好的合金层;当加入4%~10% CeO₂时,Ni60 合金层的表面平整,起伏较低,未出现"液滴"状的涂 层熔凝组织和气体溅射孔洞,可以获得较好的表面形貌, 其中加入4%~5% CeO2的Ni60合金层表面效果最好。

部分研究发现适量的稀土通过提高激光吸收率改 善熔池对流,使底层材料充分熔化,减小合金层表层 材料因能量过高产生的气化压力,降低"液滴"和气 体溅射气孔的概率,同时促进表层组织均匀,减小崩 损脱落^[11]。综上可知,与未加入稀土氧化物的 Ni60 合金层相比,添加 CeO₂的 Ni60 合金层的表面形貌有 不同程度的改善,而加入 4%~5% CeO₂的 Ni60 合金 层具有最佳表面形貌。

2.2 合金层的截面形貌

图3是7种添加有CeO₂不同含量的Ni60合金层截 面形貌,白色明亮的区域是Ni基合金层,平均厚度在 700~900 μm。图3a、3e、3f和3g中气孔较明显。图3a、 3b和3d中出现较明显的裂纹。对比发现,CeO₂+Ni60 合金层中稀土含量较少时易出现裂纹,较高时主要缺 陷为气孔,几乎无裂纹;可见,通过添加稀土氧化物 可以改善6063Al表面Ni基激光合金层的截面形貌和组 织结构,但当稀土添加量较多时,合金层的气孔也会 相应增加,影响合金层的熔覆质量和使用性能。4% CeO₂+Ni60合金层中无明显气孔和裂纹,具有相对较 好的截面形貌。

合金层的开裂主要是由于在熔覆过程中合金层热 应力和组织应力共同作用下,当应力值大于合金层材 料的抗拉强度σ时即合金层断裂而产生的^[12]。

假设合金层的厚度较薄,宏观应力状态近似为平 面应力,合金层热应力值可表示为:

$$\sigma_{\rm Tl} = \frac{-\alpha_{\rm l} \Delta TE}{1 - \nu} \tag{1}$$

由于熔覆材料和铝合金基体的热膨胀系数不同, 在相同温度变化下的热应力值为:

$$\sigma_{\rm T2} = \frac{-(\alpha_1 - \alpha_2)\Delta TE}{1 - \nu} \tag{2}$$

激光加工时的总热应力可表示为:

 $\sigma_{\rm T} = \sigma_{\rm T1} + \sigma_{\rm T2} \tag{3}$

式中, σ_T、σ_{T1}、σ_{T2}为热应力; a₁、a₂分别为熔覆材料 和铝基材的热膨胀系数; *E、v*为熔覆材料的杨氏弹性 模量和泊松比; Δ*T*为温度变化量。激光熔覆具有快速 熔化和快速凝固的特性,材料表面的过冷度极大,即 Δ*T*的值很大,合金层与基材表面承受较大的热应力。 气孔主要由残存的气体在合金层内部受热膨胀并不断 聚集形成气泡上浮,但因在激光快速凝固前来不及逸 出而被固封于合金层内部及界面中。图3a中有较大的 气孔出现,说明未添加CeO₂的Ni60合金层熔池流

Fig.1 Schematic diagram of additive manufacturing

图 2 Ni60-CeO₂ 激光合金层的宏观形貌

Fig.2 Macroscopic morphologies of Ni60-CeO₂ alloy layers with different CeO₂ contents: (a) 0%, (b) 0.5%, (c) 1%, (d) 2%, (e) 3%, (f) 4%, (g) 5%, (h) 6%, (i) 7%, and (j) 10%

图 3 不同 CeO₂含量的合金层截面形貌

Fig.3 Section-morphologies of Ni60-CeO₂ alloy layers with different CeO₂ contents: (a) 0%, (b) 2%, (c) 4%, (d) 5%, (e) 6%, (f) 7%, and (g) 10%

动性差,导致合金层内部的气体分子在极短的冷却时间内无法排出;图 3b~3d 中气孔含量大幅降低,添加 CeO₂ 对降低合金层气孔率起到关键作用,图 3e~3g 中气孔量随着 CeO₂ 的含量升高而提高,因为适量稀 土氧化物通过改善熔池对流可以促进气体的排出,但 当 CeO₂ 的添加量超过一定值又会导致稀土化合物等 夹杂物总量增多,同时使熔池流动性降低, B、Si等 造渣元素产生的化合物难以排出留在合金层中,不利 于气体排出。

2.3 合金层的微观形貌

图 4 是 Ni60 合金层和 4%CeO₂+Ni60 合金层表层 组织形貌,合金层主要为 NiAl-Cr 共晶组织,为浅灰 色的初生 NiAl 相和镶嵌在组织中的沉淀相 *a*-Cr 相。 图 4a 中 Ni60 合金层枝晶组织粗大,有明显晶粒偏析 和微观气孔出现。添加 CeO₂ 的 Ni60 合金层中呈现细 密且均匀分布的枝晶,无明显气孔(见图 4b)。这是 因为:(1)凝固时稀土元素 CeO₂ 在 NiAl 相和 *a*-Cr 相中的固溶度很小,降低了凝固体系的 Gibbs 自由能, 降低了晶粒长大的驱动力,从而抑制局部区域内的 Al、Ni、Cr 等原子扩散供给,阻碍晶体生长;(2)稀 土化合物可作为非自发结晶核心促进形核率的提高, 使晶粒度升高。

可见,添加4%CeO2可改善6063Al表面Ni60合金 层组织结构,促进合金层的晶粒细化和组织分布均匀。

2.4 合金层的相结构

图 5 是 CeO₂+Ni60 的合金层的表面 XRD 图谱,合 金层的主要相结构为 β -NiAl (Cr)、Al₃Ni、AlNi₃等。 CeO₂+Ni60 合金层中检测到了硼化物 NiB₁₂,在 CeO₂的 含量较高(5%~10%)时,衍射峰的峰值更明显,说明 CeO₂ 促进了化合物硬质相的生成。衍射图谱中存在稀土 化合物 CeNi₅、Ce₃Ni₆Si₂,这些化合物和 NiB₁₂主要作为 强化相存在于 NiAl 相的晶界中。另外,CeO₂+Ni60 合金 层中也同样可见未分解的微量 CeO₂存在于组织中。

2.5 耐腐蚀性

2.5.1 耐 H₂SO₄ 溶液的腐蚀性

图 6 是 CeO₂+Ni60 合金层在 1 mol/L H₂SO₄ 溶液 中的极化曲线和腐蚀面形貌,由图 6a 得到表 2 中腐蚀 参数。可知, CeO₂+Ni60 合金层的自腐蚀电位 (E_k =-420.16 mV)与 Ni60 合金层(E_k =-400.02 mV) 相差不大,但 CeO₂+Ni60 合金层的致钝电流密度 i_b 低 于 Ni60 合金层,说明添加 CeO₂ 的 Ni60 合金层更易 钝化。在金属腐蚀钝化原理,Ni、Cr、Al 等金属在含 氧的腐蚀介质中都易被氧等钝化,但合金层的晶界处 化学成分复杂,活性较大,稀土元素可在局部区域(如 晶界)形成钝化膜,抑制原电池反应,降低钝化电流。 在阳极腐蚀阶段,CeO₂+Ni60 合金层在相同电位时的 电流密度小于 Ni60 合金层,其自腐蚀电流密度 i_{corr} 也较低,故 CeO₂+Ni60 合金层的耐腐蚀性较高。结合 表 2 知,CeO₂+Ni60 合金层在 1 mol/L H₂SO₄ 溶液中的 耐腐蚀性是 Ni60 合金层的 4.23 倍。

在合金层腐蚀形貌中,图 6b 的 CeO₂+Ni60 合金 层出现细小的点状腐蚀坑,部分区域的点腐蚀较大, 可能是表面存在极少量的微观气孔,这些气孔周围存 在一定的应力场,导致应力腐蚀,同时气孔内部表面 积较大,增大了小区域内的腐蚀面积。图 6c 的 Ni60 合金层表面是严重的面腐蚀,腐蚀位置处于杂质和缺

图 5 CeO2+Ni60 合金层的 XRD 图谱

Fig.5 XRD patterns of CeO2+Ni60 alloy layers

图 6 CeO₂+Ni60 和 Ni60 合金层在 1 mol/L H₂SO₄ 溶液中的极化曲线和腐蚀形貌

Fig.6 Polarization curves (a) and corrosion morphologies of CeO₂+Ni60 (b) and Ni60 (c) alloy layers in 1 mol/L H₂SO₄ solution

表 2 CeO₂+Ni60和Ni60合金层在l mol/L H₂SO₄溶液中的腐蚀测试结果 Table 2 Corrosion test results of CeO₂+Ni60 and Ni60 alloy layers in l mol/L H₂SO₄ solution

Samples	Self-corrosion potential, <i>E</i> _k /mV	Initial-passive current density, $i_b/mA \text{ cm}^{-2}$	Passive current density, $i_p/mA \text{ cm}^{-2}$	Self-corrosion current density, $i_{\rm corr}$ /mA cm ⁻²	Relative corrosion rate
Ni60 alloy layer	-400.02	21.4364	-	0.6915	4.23
CeO ₂ +Ni60 alloy layer	-420.16	4.362	-	0.1634	1

陷较多的晶界,腐蚀程度远大于 CeO₂+Ni60 合金层。

2.5.2 耐 NaCl 溶液的腐蚀性

图 7a 是 CeO₂+Ni60 合金层在 3.5% NaCl 溶液中 的极化曲线,由其得到表 3 的电化学参数。在 3.5% NaCl 溶液中,CeO₂+Ni60 合金层在电位升高到 E_k =-913.52 mV 时进入阳极极化, E_k 值低于 Ni60 合金 层,即 CeO₂+Ni60 合金层的耐盐蚀倾向较低。阳极极 化后,4%CeO₂+Ni60 合金层同电位的电流密度略小于 Ni60 合金层,钝化后的维钝电流密度 i_p 也几乎相同。 从腐蚀动力学角度看,CeO₂+Ni60 合金层自腐蚀电流 密度较低,耐腐蚀性较好。结合表 3 可知,在 3.5% NaCl 溶液中,CeO₂+Ni60 合金层的耐腐蚀性是 Ni60 合金层 的 1.43 倍,相比较而言,耐腐蚀性的提高不明显。 图 7b 的 CeO₂+Ni60 合金层腐蚀面中可见细小网 状的晶体组织和腐蚀沉积物,腐蚀面平整,晶粒细小。 图 7c 的 Ni60 合金层表面晶粒粗大,腐蚀程度较严重。

2.5.3 耐 NaOH 溶液的腐蚀性

图 8 是 CeO₂+Ni60 合金层在 1 mol/L NaOH 溶液 中的极化曲线和腐蚀面形貌,由图 8 的极化曲线得到 表 4 相关腐蚀参数。在极化区间,CeO₂+Ni60 合金层 E_k =-435.59 mV,明显高于 Ni60 合金层的自腐蚀电位 (E_k =-1171.18 mV),在热力学角度说明 CeO₂+Ni60 合金层的耐碱蚀倾向较高。CeO₂+Ni60 合金层的致钝 电流密度为 46.78 mA cm⁻²,大于 Ni60 合金层的电流 值 (i_b =10.849 mA cm⁻²),腐蚀过程钝化性能较差。根 据表 4 中合金层的自腐蚀电流密度 i_{corr} 可知,在 1

图 7 CeO₂+Ni60 和 Ni60 合金层在 3.5% NaCl 溶液中的极化曲线和腐蚀形貌

Fig.7 Polarization curves (a) and corrosion morphologies of CeO₂+Ni60 (b) and Ni60 (c) alloy layers in 3.5% NaCl solution

表 3 CeO₂+Ni60和Ni60合金层在3.5% NaCl溶液中的腐蚀测试结果

Table 3Corrosion test results of CeO2+Ni60 and Ni60 alloy layers in 3.5% NaCl solution								
Samples	Self-corrosion potential, <i>E</i> _k /mV	Initial-passive current density, $i_b/mA \text{ cm}^{-2}$	Passive current density, $i_p/mA \text{ cm}^{-2}$	Self-corrosion current density, $i_{corr}/mA \text{ cm}^{-2}$	Relative corrosion rate			
Ni60 alloy layer	-738.51	381.49	349.21	0.0115	1.43			
CeO ₂ +Ni60 alloy layer	-913.52	305.46	316.52	0.0081	1			

Fig.8 Polarization curves (a) and corrosion morphologies of CeO₂+Ni60 (b) and Ni60 (c) alloy layers in 1 mol/L NaOH solution

表 4 CeO₂+Ni60和Ni60合金层在1 mol/L NaOH溶液中的腐蚀测试结果 Table 4 Corrosion test results of CeO₂+Ni60 and Ni60 alloy layers in 1 mol/L NaOH solution

Samples	Self-corrosion potential, <i>E</i> _k /mV	Initial-passive current density, $i_b/mA \text{ cm}^{-2}$	Passive current density, $i_p/mA \text{ cm}^{-2}$	Self-corrosion current density, $i_{corr}/mA \text{ cm}^{-2}$	Relative corrosion rate
Ni60 cladding layer	-1171.18	10.849	-	3.821	1.42
CeO ₂ +Ni60 cladding layer	-435.59	46.78	-	2.691	1

mol/L NaOH 溶液中, CeO₂+Ni60 合金层的耐腐蚀性是 Ni60 合金层的 1.42 倍。

图 8b、8c 是 CeO₂+Ni60 合金层和 Ni60 合金层表 面腐蚀后形貌, CeO₂+Ni60 合金层主要为点蚀,表层 白色物质为腐蚀沉积物,如 Al(OH)₃、Ce(OH)₃等。 Ni60 合金层表面腐蚀严重,有较深的孔洞和表面起 伏。加入 CeO₂ 的合金层耐腐蚀性提高,部分原因是 由于合金层的组织缺陷得到改善,另一部分原因是由 于微量稀土元素 Ce 的化合物对合金层表面的缓蚀作 用,主要为 Ce 的三价和四价化合物。如:

 $\operatorname{Ce}^{3+}+3\operatorname{OH}^{-}\rightarrow\operatorname{Ce}(\operatorname{OH})_{3}\downarrow$ (4)

$$Ce^{+} + 4OH \rightarrow Ce(OH)_4 \downarrow$$
 (5)

Ce(OH)₃和 Ce(OH)₄等稀土化合物可形成 1 层保 护膜,减缓金属表面和氧原子的接触和反应速率,减 小金属腐蚀程度。 1)在合金层表面形貌上,未加入 CeO₂的 Ni60 合金层表面出现"液滴"状熔凝组织和较大的气体溅 射孔洞,粗糙度高,并出现崩损脱落;加入 0.5%~3% CeO₂可以改善 Ni60 合金层表面粗糙度,降低表面起 伏和熔池溅射气孔出现的概率,但表层仍出现崩损脱 落;加入 4%~10% CeO₂时,Ni60 合金层的表面平整, 起伏较低,具有较好的熔覆形貌,其中加入 4%~5% CeO₂的 Ni60 合金层具有最佳表面形貌。

2)在截面形貌上,合金层中 CeO₂含量在 0%~
2%时易出现裂纹,含量在 5%~10%时主要缺陷为气孔,几乎无裂纹;4%CeO₂+Ni60 合金层中无明显气孔和裂纹,具有相对较好的截面形貌。

3)相比未加 CeO₂的 Ni60 合金层,加入 4% CeO₂的 Ni60 合金层呈现细密且均匀分布的枝晶,无明显气 孔, CeO₂可改善 Ni60 合金层的组织结构,促进合金 层的晶粒细化和组织分布均匀。

4) 在1 mol/L H₂SO₄中, CeO₂+Ni60合金层的耐腐

3 结 论

蚀性能是Ni60合金层的4.23倍;在3.5% NaCl溶液中, CeO₂+Ni60合金层耐腐蚀性能高于Ni60A合金层,是 Ni60合金层的1.43倍;在1 mol/L NaOH溶液中, CeO₂+Ni60合金层的耐腐蚀性是Ni60合金层的1.42倍。

```
参考文献 References
```

- [1] Edwards P, O'Conner A, Ramulu M. J Manuf Sci E-T ASME[J], 2013, 135(6): 061 016
- [2] Thijs L, Verhaeghe F, Craeghs T et al. Acta Materialia[J], 2010, 58(9): 3303
- [3] Liu C M, Wang H M, Tian X J et al. Materials Science and Engineering A[J], 2014, 590: 30
- [4] Sun Xiaomin(孙晓敏), Liu Dong(刘 栋), Tang Haibo(汤海波) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2013, 42(4): 724
- [5] Su Haijun(苏海军), Wei Kaichen(尉凯晨), Guo Wei(郭伟) et al. The Chinese Journal of Nonferrous Metals(中国有色金属 学报)[J], 2013, 23(6): 1567

- [6] Song M H, Lin X, Yang G L et al. Journal of Materials Processing Technology[J], 2014, 214(3): 701
- [7] Wang Huaming(王华明). Acta Aeronautica et Astronautica Sinica(航空学报)[J], 2014, 35(10): 2690
- [8] Zhang Ali(张阿莉), Liu Dong(刘 栋), Tang Haibo(汤海波) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2014, 43(7): 1686
- [9] Li Huaixue, Huang Baiying, Sun Fan et al. Rare Metal Materials and Engineering[J], 2013, 42(S2): 209
- [10] Wang Huaming(王华明), Zhang Shuquan(张述泉), Wang Xiangming(王向明). Chinese Journal of Lasers(中国激光)[J], 2009, 36(12): 3204
- [11] Qu H P, Li P, Zhang S Q et al. Materials and Design[J], 2010, 31(1): 574
- [12] Gao Yuan(高 原), Wang Chenglei(王成磊), Huang Jiaqiang (黄家强) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2011, 40(S2): 309

Effect of CeO₂ Addition on Interface Structure and Corrosion Resistance of Laser Cladding Additive Manufactured Ni60 Alloy Layers on the Surface of Al Alloys

Wang Chenglei, Gao Yuan, Zhang Guangyao

(Guilin University of Electronic Technology, Guilin 541004, China)

Abstract: Ni60 alloy layers with different contents of rare-earth CeO₂ were prepared on the surface of 6063 aluminum alloy by laser additive manufacturing. The effects of rare earth CeO₂ addition on microstructure, phase structure and corrosion resistance of bonding interface between Ni60-CeO₂ alloy layers and substrate were investigated by OM, XRD, SEM and electrochemical corrosion tester. Results show that 4%~5% CeO₂+Ni60 alloy layers have the best surface morphology. It is difficult to obtain a good alloy layer when the CeO₂ content is less than 3%. There are less surface pores, shedding and other defects when CeO₂ content is between 5% and 10%. For the cross-section morphology, the alloy layers are prone to crack when the CeO₂ content is between 0% and 2%. The main defect is porosity when the content is from 5% to 10%. The 4% CeO₂+Ni60 alloy layer has no obvious pores and cracks, with a relatively good cross-section morphology. Adding 4% CeO₂ can improve the organizational structure of Ni60 alloy layer, promote grain refinement and uniform structure distribution. Adding different contents of CeO₂ can improve aluminum surface morphology in Ni60 alloy layers, and the preferred amount of rare earth CeO₂ is 4% CeO₂. Electrochemical corrosion tests show that the corrosion resistance of CeO₂+Ni60 alloy layer is 1.43 times as that of Ni60 alloy layer. In 1 mol/L NaOH solution, the corrosion resistance of CeO₂+Ni60 alloy layer is 1.42 times as that of Ni60 alloy layer.

Key words: laser additive manufacturing; aluminum alloy; CeO₂; nickel-base; corrosion resistance

Corresponding author: Gao Yuan, Ph. D., Professor, Guilin University of Electronic Technology, Guilin 541004, P. R. China, E-mail: 13978375394@163.com