Ti-Zr-Cu-Ni-Co-Mo 钎料的特性及其 钎焊 *y*-TiAl 接头的研究

李 力,李小强,李志锋,朱德智,屈盛官

(华南理工大学,广东 广州 510640)

摘 要:采用 SEM、EDS、XRD、TEM、DSC等对晶态和快速凝固 Ti-25.65Zr-13.3Cu-12.35Ni-3Co-2Mo 钎料的显微组 织、熔化特性及相应钎焊 *y*-TiAl 接头的界面显微组织进行了分析,并检测了钎焊接头的抗拉强度。结果表明:快速凝 固 Ti-Zr-Cu-Ni-Co-Mo 钎料呈非晶态,其熔化区间比相应晶态的明显窄,且在 *y*-TiAl 表面具有良好的润湿铺展性能。晶态和非晶态 2 种钎料的钎焊接头均包含界面反应层 I 和中心钎焊层 II;当钎焊时间为 10 min、钎焊温度为 925~1050 ℃时,随钎焊温度的升高,2 种钎料的接头的抗拉强度均先增大后减小,且非晶钎料钎焊接头具有更高的抗拉强度。采用 非晶钎料经 1000 ℃钎焊 10 min 获得的接头的抗拉强度最大,为 302 MPa。

关键词: Ti-Zr-Cu-Ni-Co-Mo 钎料; y-TiAl 合金; 钎焊工艺特性; 显微组织; 抗拉强度
 中图法分类号: TG146.2⁺³
 文献标识码: A
 文章编号: 1002-185X(2017)08-2214-06

TiAl 基合金因具有密度低(只为传统的镍基高温 合金的一半)、比弹性模量高、优异的高温性能以及良 好的抗氧化能力和耐蚀性能等优点,被认为是替代镍 基高温合金和耐热钢的较为理想的轻质高温结构材 料^[1-4]。TiAl 基合金在工程中的应用不可避免地要涉及 到连接问题。目前,TiAl 基合金的连接方法有熔焊、 扩散焊、摩擦焊和钎焊等,其中钎焊被认为是最经济、 最可行的方法^[5]。迄今,TiAl 基合金钎焊所用的钎料 主要包括 Al 基^[6]、Ag 基^[7,8]和 Ti 基^[9,10] 3 种。相对于 Al 基和 Ag 基钎料,采用 Ti 基钎料钎焊 TiAl 基合金 的接头具有更为优异的高温性能和耐蚀性能。

目前,国内外学者对 TiAl 基合金钎焊用 Ti 基钎料 进行了较为广泛的研究,主要集中在 Ti-Cu-Ni、 Ti-Zr-Cu-Ni、Ti-Ni-Nb 和 Ti-Ni-V 等系列钎料。 Ti-40Ni-20Nb 和 TiNi-25V 钎料的熔点分别是 1148 和 1142 ℃,钎焊温度一般在 1200 ℃左右^[11,12],易导致 TiAl 基合金的组织发生变化。Ti-15Cu-15Ni 钎料熔点虽只有 960 ℃,但钎焊接头连接强度最高时对应的钎焊温度却 高达 1200 ℃^[13]。为了进一步降低钎焊温度,常添加 Zr 来降低 Ti-Cu-Ni 系钎料的熔点^[14]。另外,研究发现在 Ti-Zr-Cu-Ni 钎料中添加 Co 和 Mo 可改善 TiAl 钎焊接 头的高温强度、抗蠕变能力和耐蚀性能^[15,16]。因此,选 择 Ti-Zr-Cu-Ni-Co-Mo 合金作为钎料钎焊 TiAl 基合金 可降低钎焊温度并提高接头高温性能。 本研究使用的 Ti-Zr-Cu-Ni-Co-Mo 钎料为晶态和 快速凝固箔材 2 种,通过对比分析着重研究了 2 种钎 料的显微组织、熔化特性和润湿铺展性能以及采用它 们钎焊 TiAl 基合金接头的显微组织和力学性能。

1 实 验

试验母材为 Ti-47Al-2Nb-2Cr-0.15B (原子分 数,%)合金,经2次自感应熔炼和1次感应悬浮熔 炼后钢模浇铸,然后再进行热等静压处理(HIP, 1260 ℃/3 h/130 MPa)所制备,其组织主要为 y-TiAl 和 α₂-Ti₃Al 组成的全片层组织。钎料的成分为 Ti-25.65Zr-13.3Cu-12.35Ni-3Co-2Mo(质量分数,%), 一种是铸造的晶态钎料合金,另一种是铸造钎料合金 经重熔后再快速凝固得到的钎料箔带。运用扫描电子 显微镜(SEM, Nova Nano SEM 430/FEI/USA)、能 谱分析仪(EDS, INCA Penta-X3)、X 射线衍射仪 (XRD, Bruker/D8- Advanced)、透射电子显微镜 (TEM, JEOL 3010/Jeol Ltd/Japan) 和差示扫描量热 仪(DSC, NETSCH STA449C)等对2种钎料的显微 组织、熔化特性进行检测分析。采用 Φ13 mm×24 mm 的 TiAl 棒材和 24 mm×24 mm×3 mm 的 TiAl 板材分 别进行钎焊和润湿性实验。实验前, TiAl 母材表面经 360#~1000# SiC 砂纸依次打磨。润湿铺展和钎焊实 验均在 HP-12×12×12 真空炉中进行,真空度约为

收稿日期: 2016-08-20

基金项目:国防军品配套规划研制项目(XZJQ-B1120680);先进焊接与连接国家重点实验室开放课题(重点项目)(AWJ-Z14-02)

作者简介: 李 力, 男, 1979 年生, 博士, 讲师, 华南理工大学国家金属材料近净成形工程技术研究中心, 广东 广州 510640, 电话: 020-87111080, Email: liliecjtu@163.com

1.33×10⁻² Pa,升温速率为 20 ℃/min,温度为 925~ 1050 ℃,保温时间为 10 min,最后随炉冷却。润湿 铺展试验按照 GB/T11364-2008《钎料润湿性试验方 法》进行,每次钎料用量为 0.5 g;钎焊时,将 0.1 mm 厚的钎料箔材置于两 TiAl 棒材之间,并使钎料和母 材 紧 密 接 触 。 钎 焊 接 头 的 金 相 试 样 采 用 3%HF+6%HNO₃+ 91%H₂O 溶液进行腐蚀,并借助 SEM 和 EDS 分析接头的微观组织、相组成和元素分 布。按照 GB/T 1163-2008《钎焊接头强度试验方法》 测试钎焊接头抗拉强度,拉伸速率为 0.1 mm/min。

2 结果与分析

2.1 钎料的显微组织

图 1 为晶态钎料的背散射电子像(BEIs)、X 射线 衍射(XRD)图谱和透射电镜(TEM)像及选区电子 衍射(SAED)花样。从图 1a 衬度可知,晶态钎料的 组织主要由深色枝晶状的 A 相、白色的 B 相以及浅灰 色的 C 相组成,对 A~C 进行能谱分析,结果如表 1 所示。Zr 和 Ti 具有相似的性质,原子大小也极为接近, 彼此可以无限固溶; Mo 跟 Ti 的晶格结构相同、原子 尺寸相近,是 Ti 的同晶型 β 稳定元素; Cu、Ni 和 Co 是 Ti 的活性共析元素。因此,在某种程度上可将 Zr 和 Mo 视为 Ti, Ni 和 Co 视为 Cu。结合 EDS 和 XRD 分析结果,可确定 A 是 α-(Ti, Zr)、B 和 C 是 (Ti, Zr)₂(Cu, Ni)。TEM 像及 SAED 花样进一步证明晶态钎料包含 α-(Ti, Zr) 和 (Ti, Zr)₂(Cu, Ni) 2 个物相, α-(Ti, Zr) 的 物相晶体结构与密排六方晶体结构的 α-Ti 一样 (*a*=0.2950 nm, *c*=0.4681 nm,空间群是 P63/mmc), (Ti, Zr)₂(Cu, Ni) 具有典型的正方 Ti₂Cu 晶体结构 (*a*=0.2944 nm, *c*=1.0786 nm,空间群是 I4/mmm)。

图 2 是箔带钎料的 BEIs 像、XRD 图谱和 TEM 像 及 SAED 花样。从图 2a 可以看出,箔带钎料合金无衬 度区别,说明元素分布极其均匀,呈现典型的非晶特 征。在箔带钎料上随机选择 3 个不同的区域进行 EDS 分析,结果(如表 1 所示)亦说明箔带钎料元素分布 是很均匀的。由 XRD 分析可知,箔带钎料只有 1 个 宽大的漫散射衍射峰,对箔带钎料的反面以及打磨后 的箔带钎料表面进行 XRD 分析,结果亦是如此,表 明箔带钎料是完全非晶的。通过 Jade 软件查找比对 PDF 卡片可知非晶钎料的相是 β-(Ti, Zr)。箔带钎料的 TEM 像 及 SAED 花样显示箔带钎料合金的组织均匀,只有 1 个 非晶特有的衍射晕环。非晶钎料并不稳定,很容易通过

图 1 晶态钎料的显微组织和 XRD 图谱

Fig.1 Microstructure (a), XRD pattern (b) and bright-field TEM image with SAED patterns (c) of the crystalline filler

Fig.2 Microstructure (a), XRD pattern (b) and bright-field TEM image with the corresponding SAED pattern (c) of the filler foil prepared by rapid solidification

的

表 1 图 1a 和图 2a 中各点的 EDS 分析结果

Table 1	EDS results	of the spots	in Fig.1a ar	nd Fig.2a (at%)
---------	-------------	--------------	--------------	-----------------

Position	Ti	Zr	Cu	Ni	Co	Mo
А	77.28	7.76	5.97	4.89	2.67	1.43
В	41.08	19.78	16.22	19.29	2.76	0.87
С	55.51	12.53	17.35	9.08	4.76	0.77
D	54.25	16.88	12.14	12.32	3.09	1.32
Е	54.1	16.54	12.98	12.07	3.11	1.2
F	54.38	16.62	12.24	12.5	3.06	1.2

共析分解反应 (β -(Ti, Zr)→ α -(Ti, Zr)+ γ -(Ti, Zr)₂(Cu, Ni)) 转变成稳定的晶态钎料。

2.2 钎料的熔化特性

为了确定钎焊温度和升温速率,对晶态和非晶态 钎料进行了在不同升温速率的 DSC 分析,结果如图 3 所示,固、液相线温度列于表 2。由图可知,随着升 温速率从 10 ℃/min 向 40 ℃/min 增加, 固、液相线温 度均发生向高温方向偏移,且熔化温度区间增宽。非 晶钎料的熔化温度区间和液相线温度始终比晶态钎料 小,但其固相线温度总是较晶态钎料高。这主要是因 为快速凝固处理后得到的非晶钎料与同成分的晶态钎 料相比较,组织更均匀,偏析程度降低,并且快冷得 到的非晶钎料的组织从热力学角度属非平衡的亚稳态 组织,自由能更高,所以快冷得到的非晶钎料的熔化 温度降低。非晶钎料窄的熔化区间使得在钎焊过程中 钎料具有较好的流动性,不容易产生偏析,这对获得 优异的钎焊接头是非常有利的。加热速率从 10 ℃/min 增加到 20 ℃/min 时,非晶钎料的熔化温度变化并不 显著:并且此时对应的晶态钎料的液相线温度为 911 ℃, 仅比升温速率 40 ℃/min 时非晶钎料的液相线 温度(907 ℃)略高。故本研究钎焊时的加热速率设 置为 20 ℃/min。由于钎焊温度一般比钎料的液相线温 度至少高出 10 ℃,因此后续研究的钎焊温度选择为 925~1050 °C .

2.3 钎料的润湿铺展性能

图 4 所示为保温时间 10 min 时, 钎料在 TiAl 表面上润湿铺展面积随润湿铺展温度的变化曲线。晶态和非晶态钎料在 TiAl 表面上的润湿铺展面积均随温度的上升而增加,且增加的幅度呈逐渐减小趋势,2 种钎料的润湿铺展面积的差值在加热温度达到1000 ℃后几乎保持不变。随着温度的升高,钎料的流动性随之增加,液态钎料的表面张力 σ_{lg}以及液态钎料与母材基体之间的界面张力 σ_{sl}均降低。因此,温度越高,液态钎料的润湿铺展能力越强。然而,TiAl 母材合金与熔融钎料之间的相互扩散和冶金反应随着温度

Fig.3 DSC curves of the crystalline filler (a) and amorphous filler (b) at different heating rates

表 2 钎料在不同升温速率下的固、液相线温度

 Table 2
 Solidus and liquidus temperatures of the fillers at different heating rates (°C)

8 1							
Heating	Crystalline filler			Amorphous filler			
rate/°C min ⁻¹	$T_{\rm S}$	$T_{\rm L}$	$\Delta T = T_{\rm L} - T_{\rm S}$	$T_{\rm S}$	$T_{\rm L}$	$\Delta T = T_{\rm L} - T_{\rm S}$	
10	819	888	69	845	867.7	22.7	
20	820	911	91	851	874.2	23.2	
30	821	932	114	856	900	44	
40	822	955	137	859	907	48	

升而增强,导致液态钎料的熔点温度升高,黏性相较 同温度下液态原始钎料的大,以致其流动性相比同温 度下液态原始钎料有所下降,所以润湿铺展面积的增 加幅度降低。非晶钎料在 TiAl 母材表面上的润湿铺展 效果始终好于晶态钎料,这主要与它们之间的显微组 织差别有关。晶态钎料的组织粗大,存在偏析问题, 包含 α-(Ti, Zr) 和 γ-(Ti, Zr)₂(Cu, Ni)等相,且每个相 的熔点不同。当加热到钎料熔点温度时,会出现各个 相熔化不同步的现象。后熔化的高熔点相将阻碍先熔 化的低熔点相的铺展,使得钎料熔化时较难形成前驱 膜,从而降低钎料的润湿铺展能力;高熔点相则因流 散速度缓慢而引起分层现象,进一步降低了钎料的润 湿性。非晶钎料在加热直至熔化的过程中较大程度上 保留了非晶态时元素成分均匀分布的特征,以单一的 不稳定相 β-(Ti, Zr) 为主,其他相含量和偏析程度较 晶态钎料的要小很多,在润湿铺展试验过程中几乎是 同时熔化并进行润湿铺展,分层、堆积现象并不明显, 易形成前驱膜,所以具有较高的润湿铺展能力。图 5 所示为 1050 ℃保温 10 min 时 2 种钎料在 TiAl 上的润 湿铺展宏观形貌图。由图可见,相比非晶钎料,晶态 钎料润湿辅展表面具有很明显的堆积现象,且前驱膜 要窄很多。此外,在加热过程中,亚稳态的非晶钎料 易向晶态转变,发生共析分解反应(β -(Ti, Zr) $\rightarrow \alpha$ -(Ti, Zr) + y-(Ti, Zr)₂(Cu, Ni)),并放出大量潜热,从而加速 原子扩散,提高钎料的润湿铺展能力。当润湿铺展温 度比晶态钎料的液相线温度高时,由于非晶钎料的液 相线温度相对较低,导致非晶钎料的过热度较晶态钎 料的大,流动性得以改善,其物理润湿过程相对晶态 钎料短,从而更早发生反应润湿。所以在相同的条件 下晶态和非晶态钎料的润湿铺展面积间存在差异。随 着温度的进一步升高,晶态钎料的物理润湿过程时长 下降,2种钎料的反应润湿性均增强,非晶钎料相对 晶态钎料的优势减小,所以两者间的润湿铺展面积差 值减小。

2.4 钎焊接头显微组织

图 6 所示是钎焊时间 10 min,不同钎焊温度对应 接头的显微组织。从图中可以看出,钎焊接头组织主 要包括靠近 γ-TiAl 合金母材侧的界面反应层 I 和中心 钎焊层 II 。界面反应层 I 主要包括相 A,中心钎焊层 II 包括相 C、D、E。对于非晶钎料,当钎焊温度低于 1000 ℃时,其钎焊接头中还存在断续黑色相 B,介于 界面反应层 I 和中心钎焊层 II 之间。对 A~E 5 个点进 行 EDS 分析 (表 3),结合 Ti-Al 二元合金相图^[17]和 Ti(Zr)-Al-Ni(Cu) 以及 Ti(Zr)-Cu-Ni 三元合金相图^[18,19],

Fig.4 Spreading areas at different temperatures with holding

time of 10 min

可推知 A 和 B 是 Ti₃Al, C 是 (Ti, Zr)₂(Cu, Ni) 金属间 化合物相、D 是 (Ti, Zr)₂(Cu, Ni) (包含少量的 α-Ti)、 E 是 α-Ti (包含少量的 (Ti, Zr)₂(Cu, Ni))。非晶钎料钎 焊接头的组织较为致密,基本不存在明显缺陷。然而, 当钎焊温度高于 975 ℃时,晶态钎料的钎焊接头中出 现了明显孔洞(如图 6c 所示),并且其尺寸随着温度 的升高而增加。非晶钎料钎焊接头的界面反应层 I 的 厚度随着钎焊温度的增加而增大,但对于晶态钎料, 其界面反应层 I 的厚度变化并不明显,且始终小于非 晶钎料的界面反应层I的厚度。界面反应层I的厚度 越厚,表明母材向熔融钎料中溶解越多,钎料元素扩 散到母材中和母材合金元素扩散到中心钎焊层 II 也越 多。因此,在中心钎焊层 II 中出现了 AI 含量增多、钎 料元素(Zr、Cu、Ni等)减少的现象。非晶钎料钎焊 接头具有较厚的界面反应层I,主要是因为非晶钎料 的活性和润湿性好于晶态钎料。此外,随着钎焊温度 的升高,非晶钎料钎焊接头中的金属间化合物和残余 热应力增多。当温度高于1000℃时,由于形成了较多 的金属间化合物,产生了微裂纹(如图 6h 所示)。值 得一提的是,在本研究的工艺参数下,焊后母材保

持了原始的全片层组织,未发生明显的改变。

图 6 晶态和非晶态钎料在不同温度下钎焊的接头显微组织

Fig.6 Microstructures of the joints brazed with the crystalline (a~d) and amorphous (e~h) fillers at different temperatures for 10 min: (a, e) 950 °C, (b, f) 975 °C, (c, g) 1000 °C, and (d, h) 1025 °C

Table 3EDS results of the spots in Fig.6f (at%)									
Point	Ti	Zr	Cu	Ni	Co	Mo	Al	Nb	Cr
А	57.57	1.78	2.71	2.01	0.45	0	31.77	2.33	1.38
В	56.44	6	4.63	2.97	0.75	0.42	26.04	1.79	0.96
С	42.01	17.99	10.65	9.44	1.91	1.55	14.56	0.98	0.91
D	38.49	22	13.17	11.92	2.49	0	10.58	0.93	0.42
Е	59.89	10.01	7.62	10.69	3.03	1.36	6.13	0.91	0.36

表 3 图 6f 中各点 EDS 分析结果

2.5 钎焊接头的力学性能

图 7 所示为钎焊时间 10 min 时,钎焊接头抗拉强 度随钎焊温度的变化曲线。钎焊温度为 925 ℃时,晶 态钎料的钎焊接头连接效果差,抗拉强度仅 63 MPa, 而非晶钎料的接头抗拉强度已达到 126 MPa,这主要 归因于非晶钎料优异的润湿性和与母材之间较强的原 子扩散反应能力。当钎焊温度由 925 ℃升高到 1050 ℃ 时,2 种钎料钎焊接头的抗拉强度均先增大后减小。 非晶和晶态钎料钎焊接头的最大抗拉强度分别达到了 302 和 240 MPa,对应的钎焊温度分别是 1000 和 975 ℃。晶态钎料钎焊接头在 975 ℃开始出现的孔洞 以及非晶态钎料钎焊接头在 1025 ℃出现的微裂纹都 是引起力学性能下降的原因。随着钎焊温度进一步增 加到 1050 ℃,非晶钎料钎焊接头的抗拉强度下降到 152 MPa。从图中还可知,在相同的钎焊条件下,非 晶钎料钎焊接头的抗拉强度始终较晶态钎料的大,这 也进一步表明在相同的条件下非晶钎料的原子扩散和 对 TiAl 合金的润湿能力好于晶态钎料,如果要获得相 同连接强度的钎焊接头,非晶钎料需要的钎焊温度要 比晶态的低。

图 7 钎焊温度对钎焊接头抗拉强度的影响

Fig.7 Effect of brazing temperarure on tensile strength of the joints brazed with the amorphous and crystalline fillers

3 结 论

 Ti-25.65Zr-13.3Cu-12.35Ni-3Co-2Mo 晶态钎料 主要包括 α-(Ti, Zr) 和 (Ti, Zr)₂(Cu, Ni) 2 个物相,而 经重熔后快速凝固得到的箔带钎料呈非晶态、元素分 布均匀、只有单一的 β-(Ti, Zr) 相。

2) 晶态钎料和非晶钎料的熔化温度区间均随升温 速率的提高而增大。非晶钎料的熔化温度区间比相应 晶态的明显窄,且非晶钎料在 y-TiAl 表面的润湿性比 晶态的好。

3) 晶态和非晶态 2 种钎料的钎焊接头均包含界面 反应层 I 和中心钎焊层 II;当钎焊时间为 10 min、钎 焊温度为 925~1050 ℃时,随钎焊温度的升高,2 种 钎料的钎焊接头的抗拉强度均先增大后减小,且非晶 钎料钎焊接头具有更高的抗拉强度。采用非晶钎料经 1000 ℃钎焊 10 min 获得的接头的抗拉强度最大,为 302 MPa。

参考文献 References

- [1] He Peng(何 鹏), Li Haixin(李海新), Lin Tiesong(林铁松) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(11): 2248
- [2] Cao J, Liu J K, Song X G et al. Mater Des[J], 2014, 56: 115
- [3] Liu J, Dahmen M, Ventzke V et al. Intermetallics[J], 2013, 40:

65

- [4] Liu J K, Cao J, Song X G et al. Mater Des[J], 2014, 57: 592
- [5] Cao J, He P, Wang M. Intermetallics[J], 2011, 19(7): 855
- [6] Shiue R K, Wu S K, Chen S Y. *Intermetallics*[J], 2003, 11(7): 661
- [7] Shiue R K, Wu S K, Chen S Y. Acta Mater[J], 2003, 51(7): 1991
- [8] He P, Feng J C, Xu W. Mater Sci Eng A[J], 2006, 418(1-2): 53
- [9] Lee S J, Wu S K, Lin R Y. Acta Mater[J], 1998, 46(4): 1297
- [10] Lee S J, Wu S K, Lin R Y. Acta Mater[J], 1998, 46(4): 1283
- [11] Song X G, Cao J, Chen H Y et al. Mater Sci Eng A[J], 2012, 551: 133
- [12] Song X G, Cao J, Liu Y Z et al. Intermetallics[J], 2012, 22: 136
- [13] Lee S J, Wu S K. Intermetallics[J], 1999, 7(1): 11
- [14] Chang C T, Wu Z Y, Shiue R K et al. Mater Lett[J], 2007, 61(3): 842
- [15] Leyens C, Peters M. Titanium and Titanium Alloys[M]. New York: Wiley-VCH, 2003: 456
- [16] Li L, Li X Q, Hu K et al. Mater Sci Eng A[J], 2015, 634: 91
- [17] Lee M K, Kim K H, Lee J G et al. Mater Charact[J], 2013, 80: 98
- [18] Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy Phase Diagrams[M]. USA: ASM International, 1995: 9846
- [19] Li X Q, Li L, Hu K et al. Intermetallics[J], 2015, 57:7

Characterization of Ti-Zr-Cu-Ni-Co-Mo Filler and Brazed y-TiAl Joint

Li Li, Li Xiaoqiang, Li Zhifeng, Zhu Dezhi, Qu Shengguan (South China University of Technology, Guangzhou 510640, China)

Abstract: The microstructure and melting characteristic of the Ti-25.65Zr-13.3Cu-12.35Ni-3Co-2Mo fillers prepared via casting and rapid solidification, as well as the interfacial microstructure of the brazed γ -TiAl joint were analyzed by SEM, EDS, XRD, TEM and DSC. The tensile strength of the brazed joint was also evaluated. Results show that the Ti-25.65Zr-13.3Cu-12.35Ni-3Co-2Mo filler prepared by rapid solidification is fully amorphous. The amorphous filler shows narrower melting temperature interval and better wettability to γ -TiAl compared with the crystalline filler. The joints brazed with crystalline and amorphous fillers are both composed of a central brazed layer II between two interfacial reaction layers I, and the tensile strength first increases and then decreases in the brazing temperature range of 925~1050 °C for 10 min. However, the tensile strength of the joints brazed with the amorphous filler is always much higher than that with the crystalline filler, and it obtains a maximum value of 302 MPa at temperature of 1000 °C with a holding time of 10 min.

Key words: Ti-Zr-Cu-Ni-Co-Mo filler; γ-TiAl alloy; brazing process characteristics; microstructure; tensile strength

Corresponding author: Li Xiaoqiang, Ph. D., Professor, National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, P. R. China, Tel: 0086-20-87111080, E-mail: lixq@scut.edu.cn