选区激光熔化成形 TiC 固溶增强钨基复合材料研究

张国全,顾冬冬

(南京航空航天大学, 江苏 南京 210016)

摘 要:利用选区激光熔化(SLM)工艺制备了纳米 TiC 固溶增强 W 基复合材料,研究了不同激光线能量密度(η) 对 SLM 成形试件致密度、微观组织、显微硬度和摩擦磨损性能的影响。结果表明:当η过低时,成形试件中存在明显 残余孔隙;而当η过高时,因热应力影响,成形试件中形成显微裂纹,均降低成形致密度。而在适宜的η=2.1 kJ/m 时, SLM 成形试件致密度达到理论密度的 94.7%,平均显微硬度(HV_{0.2})高达 8062 MPa;摩擦磨损实验结果表明试件的摩擦 系数曲线平稳,平均摩擦系数值为 0.583,相应的磨损率较低为 0.69×10⁻¹⁵ m³/N m;激光成形试件中形成均匀分布的柱 状晶,平均晶粒直径为 0.73 μm。

关键词: 增材制造; 选区激光熔化; 钨; 金属基复合材料

中图法分类号: TB333 文献标识码: A 文章编号: 1002-185X(2015)04-1017-07

难熔金属钨(W)以其优越的性能,如高熔点、 高弹性模量、高抗热冲击性以及低的热膨胀系数和良 好的高温强度,使其成为理想的高温结构材料^[1-3]。然 而,W材料固有的一些脆性限制了其作为结构材料的 应用^[4]。为提高W材料的延展性,可在纯W中加入 纳米陶瓷相,制备W基复合材料^[5]。特别是,纳米陶 瓷相固溶于W基体中,形成固溶增强W基复合材料, 可很好地改善W材料的性能^[6]。这是因为间隙/置换固 溶相可以使W晶格发生局部畸变,产生以间隙/置换 位置为中心的应力场。当显微裂纹尖端与这一个应力 场相互作用时,会导致裂纹发生偏转、分枝等作用,进 而阻止裂纹的继续扩展,提高W基复合材料的性能^[2]。

目前,W及其合金已成为国防军工、能源开采、 机械加工、航空航天、核反应堆等领域不可缺少的材 料^[7-9]。在这些应用场合,W材料零部件往往形状比较 复杂,通常有孔、槽、变截面等特征,这要求W材料 零部件制造向高的三维形状设计自由度发展。然而, 由于W固有的高熔点和低温脆性,使其加工制造困 难,这无疑限制了其作为结构材料的应用。通常,大 部分W材料零件采用粉末冶金方法制备。由于其高熔 点特性,必须在较高温度下进行烧结成形^[10-12]。然而, 在此过程中,W晶粒将长时间暴露于高温环境中,致 使W晶粒长大。由于晶粒边界上的弱化作用,将明显 降低W材料的成形性能;此外,传统烧结方法易造成 成形材料或零件内部产生孔隙和杂质,这些缺陷也限 制了其应用^[13]。因此,为克服传统成形方法的不足, 有必要采用一些新型的成形技术。

选区激光熔化(Selective Laser Melting, SLM)是 新近发展起来的一种增材制造(Additive Manufacturing, AM)技术,可以成形复杂形状的零部件,包括金属、 合金以及金属基复合材料^[14]。SLM 是利用计算机控制 高能激光作为能量源,对原始粉体进行逐层堆积成形, 最终成形任意形状的三维零部件;而一般不需要或很少 需要热处理强化或二次熔浸等辅助工艺^[15]。近年来, 诸多研究单位利用 SLM 激光成形工艺制备了具有良好 综合性能的金属或合金块体材料及零件^[16-19]。特别是, 得益于高能激光器的不断发展,可利用 SLM 技术成形 W 和 Ta 等难熔金属材料^[20,21]。

尽管如此, SLM 工艺采用激光作为唯一热源而直 接熔化粉体成形,故成形质量取决于激光与粉体的作 用机制,并受控于一系列工艺参数,如激光功率 P、 扫描速率 v、扫描间距 d、铺粉厚度 h 等。因此,有必 要深入研究工艺参数对 SLM 成形 W 基复合材料过程 及质量的影响规律。SLM 基于激光逐行扫描成形,粉 体吸收激光能量主要取决于 P 和 v,故可采用激光线 能量密度 η (η =P/v)来综合考虑 P 和 v 两者的影响。 在不同 η 条件下,对高能球磨制备的 TiC/W 纳米复合 粉体进行 SLM 成形,研究 η 对激光成形 W 基复合材

收稿日期: 2014-04-26

基金项目: 国家自然科学基金资助 (51104090, 51322509); 江苏省杰出青年基金资助 (SBK201310330); 南京航空航天大学基本科研业 务费资助 (NE2013103); 南京航空航天大学研究生创新基地(实验室)开放基金资助 (kfjj120208)

作者简介: 张国全, 男, 1987 年生, 硕士生, 南京航空航天大学材料科学与技术学院, 江苏 南京 210016, 电话: 025-52112626, E-mail: guo.quan.zhang@hotmail.com

料致密化、显微组织、显微硬度以及摩擦磨损性能的 影响,并探讨冶金作用机制,进而优化 SLM 成形工艺 及性能。

1 实 验

实验采用高能球磨制备的 TiC/W 纳米复合粉末, 其中纳米 TiC 组分比例 1.5%。TiC/W 纳米复合粉末颗 粒平均粒度 0.61 μm,其扫描电子显微 (SEM)、透射 电子显微 (TEM)及对应的选区衍射花样 (SADP) 表征如图 1 所示; TiC/W 纳米复合粉末制备及表征见 文献[22]。

本研究所使用的 SLM 成形系统主要包括激光功 率 200 W,光斑直径 70 µm 的 IPG YLR-200 光纤激光 器、保护气氛装置、自动铺粉设备以及用于控制成形 的计算机系统。激光成形过程采用 Ar 保护,Ar 出气 压力 3 kPa,成形系统内 O₂含量低于 10 mg/L。SLM 过程中,首先将待加工试件的 CAD 模型离散分成一 系列二维薄层;然后,利用高能激光束有选择地熔化/ 凝固粉层,每一层为离散的 CAD 模型的一个截面。 SLM 工艺参数如下:激光功率 P=160 W,扫描速率 v分别为 0.3, 0.2, 0.075, 0.05 m/s,相应的激光线能量 密度 η 为 0.55, 0.8, 2.1, 3.2 kJ/m;扫描间距 50 µm, 铺粉厚度 25 µm;最终制成尺寸 8 mm×8 mm×8 mm 的 块体试件。

SLM 成形试件的致密度利用 Archimedes 原理测 算。利用 Bruker D8 Advance 型 X 射线衍射仪(X-ray diffractometer, XRD)进行物相分析, Cu Ka 衍射 (λ =0.154 059 8 nm), 电压 40 kV, 电流 40 mA, 采 用连续扫描的方式。按照金相制备标准对 SLM 成形试 件的横截面进行打磨及抛光,采用 XJP-300 型光学显 微镜(OM)观察其金相显微组织。采用腐蚀剂 HF(10 mL), HNO₃(30 mL), H₂O(70 mL)溶液浸蚀金 相试样,腐蚀时间 15 s。利用 HITACHI S-4800 型场 发射扫描电镜(FE-SEM)观察试样横截面显微组织,

图 1 TiC/W 纳米复合粉末

Fig.1 TiC/W nanocomposites powder for SLM: (a) SEM characterization and (b) TEM and SADP micrographs

加速电压 3.0 kV。SLM 成形试件的显微硬度利用 HVS-50 型数字显维氏硬度计测定,载荷 1.96 N (0.2 kg),保载时间为 20 s。利用 HT-500 型高温摩擦仪 在室温下测定 SLM 成形试件的摩擦磨损性能,对磨材 料为 GCr15 球,直径 3 mm,钢球转动速度 10 m/min, 转动半径 2 mm,载荷 5.194 N (0.53 kg),摩擦测试 时间 15 min。试件磨损率利用 $V=M_{loss}/\rho$ 和 $\omega=V/(PL)$ 公式测定,其中 V 为摩擦磨损实验后试件损失的体积 值, M_{loss} 为摩擦磨损实验后试件损失的质量 (g), ρ 为 SLM 成形试件的密度 (g/cm³), ω 为试件的磨损率 (m³/N m),P 为法向载荷 (N),L 为滑动距离 (m)。

2 结果与讨论

2.1 物相分析

图 2a 所示为标准 W 的衍射峰(JCPDS Card No. 04-0806)和不同线能量密度 η 下 SLM 成形试件在 $2\theta=30 \sim 110$ 的扫描范围内,扫描速率为 4 9min 测得的 XRD 图谱。从图中可知,不同线能量密度 η 下 SLM 成形试件的衍射峰为 W 峰,而没有发现其它衍射峰。 为进一步测定衍射峰特征,对 SLM 成形试件在 $2\theta=39.5 \sim 41$ %角度范围内进行 XRD 扫描,扫描速率 1 9min(图 2b);对比标准 W 在 $2\theta=40.26$ 的衍射峰,随着 η 不断增加,SLM 成形试件的衍射峰 2θ 角发生 了明显的正移;同时,衍射峰逐渐宽化且强度明显降低(图 2b),表明 SLM 成形试件中 W 晶粒发生了细 化。通过布拉格方程:

$$2d\sin\theta = n\lambda(n=1, 2, 3,...) \tag{1}$$

在较高线能量密度 η 下,2 θ 角增大(图2),晶 面间距 d 减小,可以推断发生了固溶。通常,固溶 的发生伴随着微观体积的膨胀, 故对晶界产生了压 应力,影响了晶格常数。由于高能激光束聚焦的能 量密度最高可以达到 10¹⁰⁻¹² W/cm², 且可以使材料 表面温度急速上升到 10⁵ K, 足以完全熔化 TiC (*t*_m=3160 ℃)和W(*t*_m=3422 ℃)粉末组分。因此, 在高能激光束非平衡热源的作用下, TiC 组分将分 解为游离的 Ti 和 C 原子。游离的 C 原子以间隙的方 式进入 W 晶格当中; 而游离的 Ti 原子以置换的方 式进入 W 晶格当中,最终形成固溶型 W 基复合材 料。Hume-Rothery 原理表明^[23],只有当溶质与溶剂 原子半径的相对差 $\Delta R < 15\%$ 时,才能形成溶解度较大 甚至无限溶解的固溶体;反之形成有限固溶体。而 Ti 和 W 的原子半径的相对差 ΔR 只有 5.3%, 所以 Ti 原子可以无限固溶于 W 基体。

2.2 致密化行为

图 3 所示为不同激光线能量密度η下 SLM 成形试件

图2 标准W峰和不同线能量密度下SLM成形试件XRD图谱

Fig.2 Standard W peak and XRD spectra of SLM-processed parts at different laser linear energy densities with different scan rates: (a) 4 9min and (b) 1 9min

典型横截面形貌。SLM成形试件致密度随η的变化情况 如图4所示。当线能量密度η为较低的0.55 kJ/m时,SLM 成形试件横截面上存在明显的残余孔隙,孔隙尺寸范围 为10~80 μm,并呈不规则形状(图3a);此时,SLM成 形试件密度仅为理论密度的88.6%(图4)。随着线能量 密度η增至0.8 kJ/m,SLM成形试件致密度得到一定程度 的改善,达到理论密度的90.3%(图4);试件孔隙率降 低,残余孔隙尺寸减小,尺寸范围为5~40 μm(图3b)。 当线能量密度η继续增至2.1 kJ/m时,SLM成形件截面接 近全致密(图3c),试件致密度增至94.7%(图4)。而当 η进一步增至3.2 kJ/m时,试件横截面出现明显的显微裂 纹(图3d);成形致密度降低至理论密度的90.8%(图4)。

SLM熔池中液相粘度µ与温度T的关系可表示为^[24]:

$$\mu = \frac{16}{15} \sqrt{\frac{m}{k_{\rm B}T}} \gamma \tag{2}$$

式中, m为原子质量, $k_{\rm B}$ 为Boltzmann常数, T为温度, γ 为液相的表面张力。在相对较低的线能量密度 η 作用下, 由于粉层吸收的激光能量较低, 熔池中液相的温度T较 低, 故熔池中液相的粘度 μ 较高; 同时,由于SLM成形 过程中,液相的冷却速度极快,可以达到10⁶⁻⁷ K/s, 致 使液相不足以有效扩展,进而产生了大量的残余孔隙,

- 图 3 不同激光线能量密度下SLM成形试件横截面金相图片
- Fig.3 OM images showing microstructures on cross-sections of SLM-processed parts at different laser linear energy densities: (a) η=0.55 kJ/m, (b) η=0.8 kJ/m, (c) η=2.1 kJ/m, and (d) η=3.2 kJ/m

Fig.4 Relative densities of SLM-processed parts at different laser linear energy densities

降低了成形试件的致密度。

另一方面,在较高的线能量密度 η 下,显微裂纹 的形成是由于热应力的影响而造成的。一般认为,在 相对较高的线能量密度 η 条件下,由于粉层吸收的激 光能量较高,熔池中液相具有较高的温度 T,故将降 低了液相粘度 μ (公式 2),进而导致液相的过热度增 大,同时增加了熔池的不稳定性。此外,SLM 成形过 程中,液-固转变将产生凝固收缩,收缩率 d($\Delta L/L_0$)/dt 可表示为^[25]:

$$\frac{\mathrm{d}(\Delta L/L_0)}{\mathrm{d}t} = \frac{\Delta P\xi}{D_G \mu} \tag{3}$$

式中, ΔP 为液相毛细管力, D_G 为晶粒直径, ξ 为液相 深度。结合公式(2)和(3),在较高的 η 作用下,粘度 μ

降低,液-固转变的凝固收缩率增大,产生的热应力在 激光快速凝固过程中来不及释放,从而积聚并残留于 凝固组织中,进而产生了明显的凝固显微裂纹,降低 了SLM成形试件的致密度。

2.3 显微组织表征及分析

图5为SLM成形试件横截面典型的显微组织随激 光线能量密度η变化情况。在线能量密度η较低(0.55 kJ/m)时,SLM成形件内部凝固组织存在明显的缺陷, 呈粗大的块状凝固组织,内部晶体未能获得有效的生 长(图5a)。当线能量密度η增至0.8 kJ/m时,SLM成形 试件的凝固组织表现出明显的柱状晶结构,但柱状晶 分布不均匀,平均晶粒直径约为0.74 μm(图5b)。当 线能量密度η继续增至2.1 kJ/m时,柱状晶生长和分布均 匀,平均直径约为0.73 μm(图5c)。当η进一步增至3.2 kJ/m时,凝固组织仍表现为柱状晶,但柱状晶在长度方 向上进一步长大,平均直径也增大至0.87 μm(图5d)。

利用传统粉末冶金烧结法制备的W材料显微组织 通常为等轴晶结构,其平均晶粒尺寸为数十微米^[26,27]。 本研究中SLM成形的W基复合材料显微组织表现为明 显的柱状晶结构;柱状晶长度为5~9 μm,直径为 0.74~0.89 μm。由于晶粒长大过程主要依靠晶界迁移, 而温度和凝固速率对晶界迁移具有重要影响。研究表 明^[28],在高温度梯度和高凝固速率下,由于材料的各 向异性,可使晶粒择优生长;且在不同的热流密度下, 晶粒的择优生长方向不同。在SLM成形过程中,高能 激光束在粉床中形成的熔池温度很高,而熔池周围的 粉末温度较低,进而使熔池中心和边缘形成较大的温

图 5 不同激光线能量密度下 SLM 成形试件的高倍显微组织

Fig.5 High-magnification FE-SEM images of SLM-processed parts at different laser scan rates and laser linear energy densities: (a) η =0.55 kJ/m, (b) η =0.8 kJ/m, (c) η =2.1 kJ/m, and (d) η =3.2 kJ/m 度梯度。因此,在SLM成形的高温度梯度和高凝固速 率下,晶体会沿着热流的反方向生长,这有利于形成 柱状晶组织。在较低的线能量密度η作用下,熔池中液 相温度较低、粘度较高,液相流动困难,柱状晶难以 有效生长及形成(图5a)。而随着η增加,激光熔池单 位时间内吸收更多能量,液相流动性增强,柱状晶生 长特性增强、组织均匀。熔池中局部的温度梯度和化 学浓度梯度产生了液相表面张力梯度,同时产生了 Marangoni对流;而Marangoni对流可引起液相毛细管 力,进一步促进了液相中凝固晶核发生重排,使晶体 组织结构均匀(图5c)。而当线能量密度η过高时,激 光熔池中液相温度较高,晶粒长大倾向明显,致使柱 状晶的长度和直径增大(图5d)。

另一方面,SLM成形试件的凝固组织表现为柱状 晶,是受晶体学择优取向的影响。熔池中微观晶体组 织的生长不仅受熔池内热流方向的影响,而且受晶体 择优取向的影响。SLM成形过程中,W柱状晶的长大 采用的是"垂直长大方式",晶体的生长方向主要由择 优取向决定,而择优取向主要受温度梯度的影响。晶 体往往在与温度梯度方向近似的方向生长得最快,使 得沿该方向生长的晶体在生长过程中能够逐步将生长 取向与温度梯度方向相差较大的晶体组织淘汰掉,进 而呈现定向生长。由于体心立方结构的W稳定性最好, 且其择优晶体学取向是3个<100>方向,通常最终选择 的生长方向将是与凝固界面的推进速度方向夹角最小 的一个<100>取向。晶体在某一晶体学取向[*hkl*]上的生 长速度 $|\overline{v_{hkl}}|$ 和凝固界面前沿的推进速度 $|\overset{\mathbf{u}}{v_s}|$ 的关 系为^[29]:

万^{匹万}:

$$\begin{vmatrix} \mathbf{u} \\ \mathbf{v}_{s} \end{vmatrix} = \begin{vmatrix} \mathbf{u} \\ \mathbf{u} \\ \mathbf{v}_{hkl} \end{vmatrix} \cdot \mathbf{n} = \begin{vmatrix} \mathbf{u} \\ \mathbf{v}_{hkl} \end{vmatrix} \cos \boldsymbol{\Phi}$$
(4)

式中, **Φ** 为凝固界面前沿的推进速度与晶体择优生长方向的夹角。因此, SLM 成形固溶型 W 基复合材料过程中, 在优化工艺参数下凝固组织表现为柱状晶生长特征。

2.4 显微硬度

图 6 所示为不同线能量密度 η 作用下 SLM 成形试 件横截面显微硬度的变化情况。由图可知,在 η 为较 低的 0.55 kJ/m 条件下,因 SLM 成形试件中含有孔隙 (图 3a),致密度较低(图 4),成形试件的平均显微 硬度(HV_{0.2})较低,为 6985 MPa。当 η 增加至 0.8 kJ/m 时,因试件孔隙率降低,成形试件平均显微硬度(HV_{0.2}) 增至 7216 MPa。当线能量密度 η 继续增至 2.1 kJ/m 时, 由于 SLM 成形试件接近全致密(图 4),柱状晶生长 和分布均匀(图 5c),平均显微硬度(HV_{0.2})增加至 8062 MPa。而当 η 进一步增至 3.2 kJ/m 时,由于成形试件 存在明显的显微裂纹(图 5d),试件的平均显微硬度 (HV_{0.2})降至 7789 MPa。比较可知,SLM 成形 W 基复 合材料的显微硬度(HV_{0.2})达到 7000~8000 MPa,而传 统烧结方法制备块体 W 材料硬度值 30.5 HRC^[30](约 合 3100 MPa);这表明 SLM 工艺可获取组织致密、显 微结构新颖、且显微硬度显著提高的 W 基块体材料。

2.5 摩擦磨损性能

图7为不同线能量密度n下SLM成形试件横截面 摩擦系数(COF)随测试时间的变化曲线,图 8 为对应 的 SLM 试件磨损率的变化。可见, 在 η 为较低的 0.55 kJ/m 时,成形试件摩擦系数曲线在摩擦初期波动明 显,随时间延长摩擦系数值逐渐稳定在 0.658 (图 7); 在此参数下,试样磨损率较大,为1.78×10⁻¹⁵ m³/N m (图 8)。究其原因, 在 η 较低时, 因成形试件孔隙较 多,存在大量微裂纹源;试件在摩擦过程中,裂纹不 断扩展,使材料发生了严重的剥落和分裂。当η增至 0.8 kJ/m 时,成形试件的摩擦系数曲线波动有所减弱, 但摩擦系数值仍不稳定,平均摩擦系数值减至 0.577 (图7), 磨损率减少至1.52×10⁻¹⁵ m³/Nm(图8)。当 η继续增至 2.1 kJ/m 时,摩擦系数曲线基本保持平稳, 平均摩擦系数值为 0.583 (图 7), 磨损率进一步降至 0.69×10^{-15} m³/N m (图 8)。这是由于随着 η 的增加, SLM 成形试件致密度明显提高,显微组织细化、均匀, 基体中固溶相的增强效果提高,W材料脆性得到改善, 摩擦磨损测试中材料不易发生脆性剥落和分裂。当 η 进一步增至 3.2 kJ/m 时,试件摩擦系数曲线在初期阶段 比较稳定,但随着时间的延长摩擦系数曲线出现了局部 的波动,平均摩擦系数值增至0.632(图7),导致磨损 率升高为 0.83×10⁻¹⁵ m³/N m (图 8)。SLM 试件摩擦磨 损性能的降低,与激光能量输入过高时试件内部形成显 微裂纹(图 3d)和晶粒发生粗化(图 5d)有关。

Fig.6 Microhardness of SLM-processed parts at different laser linear energy densities

图7 不同激光线能量密度下SLM成形试件的摩擦系数(COF) 曲线

Fig.7 Friction coefficient of SLM-processed parts at different laser linear energy densities

图 8 不同激光线能量密度下 SLM 成形试件磨损率

Fig.8 Wear rate of SLM-processed parts at different laser linear energy densities

3 结 论

 采用 SLM 工艺对 TiC/W 纳米复合粉末进行激 光成形,在高能激光熔化过程中,TiC 组分可固溶到
W 基体中,形成固溶增强 W 基复合材料。

2) SLM 成形过程及质量受激光线能量密度 η 的影响显著。当 η 过低时,成形试件存在残余孔隙,致密度为理论密度的 88.6%;当 η 过高时,由于热应力的影响,成形试件中形成显微裂纹,SLM 成形致密度较为 90.8%。而在适宜的 η 为 2.1 kJ/m 时,SLM 成形试件接近全致密,达到理论密度的 94.7%。

SLM 成形试件的典型显微组织表现为柱状晶结构,在η为2.1 kJ/m条件下,柱状晶组织细化、分布均匀,平均晶粒直径为0.73 μm。

4) 在优化工艺下, SLM 成形 W 基复合材料试

件显微硬度(HV_{0.2})可达 8062 MPa; 摩擦系数曲线分 布平稳,平均摩擦系数值降至 0.583,磨损率低至 0.69×10⁻¹⁵ m³/N m。

参考文献 References

- [1] Fahim N F. Surface and Coatings Technology[J], 2008, 202(9): 1696
- [2] Kurishita H, Amano Y, Kobayashi S et al. Journal of Nuclear Materials[J], 2007, 367(1-4): 1453
- [3] Guo Shuangquan(郭双全), Ge Changchun(葛昌纯), Feng Yunbiao (冯云彪) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2011, 40(12): 2167
- [4] Kurishita H, Matsuo S, Arakawa H et al. Journal of Nuclear Materials[J], 2010, 398(1-3): 87
- [5] Zhong Fali(种法力), Yu Fuwen(于福文), Chen Junling(陈俊凌). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2010, 39(4): 750
- [6] Zhang Taiquan, Wang Yujin, Zhou Yu et al. Materials Science and Engineering: A[J], 2009, 512(1-2): 19
- [7] Zheng L, Schmitz G, Meng Y et al. Critical Reviews in Solid State and Materials Sciences[J], 2012, 37(3): 181
- [8] Zheng Xin(郑 欣), Bai Run(白 润), Wang Donghui(王东辉) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2011, 40(10): 1871
- [9] Wang Song(王 松), Xie Ming(谢 明). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2012, 41(S2): 145
- [10] Battabyal M, Schaeublin R, Spaetig P et al. Materials Science and Engineering A[J], 2012, 538: 53
- [11] Ma Yao(马 垚), Zhou Zhangjian(周张健), Tan Jun(谈 军) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2011, 40(1): 4
- [12] Ouyang Mingliang(欧阳明亮), Qin Mingli(秦明礼), Qu Xuanhui(曲选辉) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2009, 38(S1): 122
- [13] Zheng L, Zhang M C, Chellali R et al. Applied Surface Sciences[J], 2011, 257(23): 9762
- [14] Gu D D, Meiners W, Wissenbach K et al. International Materials Reviews[J], 2012, 57(3): 133
- [15] Yang Yongqiang(杨永强), Wang Di(王 迪), Wu Weihui(吴伟

辉). Chinese Journal of Lasers(中国激光)[J], 2011, 38(6): 54

- [16] Huang Weidong(黄卫东), Lin Xin(林 鑫). Materials China (中国材料进展)[J], 2010, 29(6): 12
- [17] Wang Huaming(王华明). Acta Aeronautica et Astronautica Sinica(航空学报)[J], 2002, 23(5): 473
- [18] Zhang Tiebang(张铁邦), Hu Rui(胡锐), Zhong Hong(钟宏) et al. Rare Metal Materials and Engineering(稀有金属材料 与工程)[J], 2012, 41(10): 1837
- [29] Chen Jing(陈 静), Zhao Xiaoming(赵晓明), Yang Haiou(杨 海鸥) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2008, 37(9): 1664
- [20] Wang H M, Luan D Y, Zhang L Y. Scripta Materialia[J], 2003, 48: 1179
- [21] Thijs L, Sistiaga M L M, Wauthle R et al. Acta Materialia[J], 2013, 61(12): 4657
- [22] Zhang G Q, Gu D D. Applied Surface Science[J], 2013, 273: 364
- [23] Pan Jinsheng(潘金生). Materials Science Fundamentals(材 料科学基础)[M]. Beijing: Tsinghua University Press, 1998
- [24] Takamichi I, Roderick I L G. The Physical Properties of Liquid Metals[M]. Oxford: Clarendon Press, 1993
- [25] Zhu H H, Lu L, Fuh J Y H. Materials Science and Engineering A[J], 2004, 371(1-2): 170
- [26] Han Yong(韩勇), Fan Jinglian(范景莲), Liu Tao(刘涛) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2012, 41(7): 1274
- [27] Zhang Pingping(张苹苹), Shen Weiping(沈卫平), Zhou Yanan(周亚南) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2012, 41(8): 1431
- [28] Xiao Zhixia(肖志霞), Zheng Lijing(郑立静), Yang Lili(杨莉莉) et al. Acta Metallurgica Sinica(金属学报)[J], 2010, 46(10): 1223
- [29] Yang S, Huang W D, Liu W J et al. Acta Materialia[J], 2002 50(2): 315
- [30] Liu Wensheng(刘文胜), Zhang Jiajia(张佳佳), Ma Yunzhu (马运柱) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2012, 41(7): 1284

Selective Laser Melting of TiC Solid Solution Strengthened Tungsten Matrix Composites

Zhang Guoquan, Gu Dongdong

(Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: The nanocrystalline TiC solid solution strengthened tungsten matrix composites were prepared by selective laser melting (SLM). The influence of applied laser linear energy density (η) on densification level, microstructure, microhardness, and wear resistance of SLM-processed composite parts was studied. Results show that a low laser linear energy density leads to the formation of micropores. In contrast, a high laser linear energy density produces the microcracks, caused by the thermal stress. These two situations generally lower the SLM densification. However, at a reasonable η of 2.1 kJ/m, the SLM-processed composites part has a near-full 94.7 % theoretical density and a significantly increased microhardness (HV_{0.2}) of 8062 MPa. The dry sliding wear tests reveal that a considerably low friction coefficient of 0.583 without any apparent fluctuation and a reduced wear rate of 0.69×10⁻¹⁵ m³/Nm are achieved. A uniform distribution of columnar crystals is obtained in SLM-processed tungsten matrix composites, with an average diameter of crystals of 0.73 µm. **Key words**: additive manufacturing; selective laser melting; tungsten; metal matrix composites

Corresponding author: Gu Dongdong, Ph. D., Professor, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China, Tel: 0086-25-52112626, E-mail: dongdonggu@nuaa.edu.cn