Ta 含量对 Ti/IrO₂-Ta₂O₅ 电极电容性能影响

贺 μ^1 ,陈志杰¹,林德源²,陈云翔²,邵艳群¹,伊昭宇¹,唐 电¹

(1. 福州大学, 福建 福州 350108)

(2. 国网福建省电力有限公司电力科学研究院, 福建 福州 350007)

摘 要:采用低温热分解法制备了 Ti 基 IrO₂-Ta₂O₅氧化物涂层电极。通过 X 射线衍射(XRD),循环伏安曲线,交流阻 抗谱,恒流充放电等测试方法分析了 Ta 含量对 IrO₂-Ta₂O₅氧化物涂层组织结构及电容性能的影响。结果表明,Ta₂O₅可抑制 IrO₂的晶化程度。随涂层中 Ta 含量增加,晶化度降低。当 Ta 含量为 60 mol%时,IrO₂-Ta₂O₅电极的结晶度为 6.4%, 具有较小的电荷转移电阻和最高的比电容 (239.2 F/g),比 IrO₂电极比电容(54.1 F/g)提高了近 4 倍。

关键词:二氧化铱:五氧化二钽;超级电容器;交流阻抗谱

中图法分类号: TG146.2⁺3 文献标识码: A 文章编号: 1002-185X(2017)09-2589-05

电化学电容器是介于静电容器与电池之间的新型 储能元件,具有比功率高、比容量大、成本低、循环 寿命长、充放电效率高及不需要维护和保养等优点, 在移动通讯、信息技术、电动汽车、航空航天和国防 科技等领域具有广阔的应用前景[1-3]。电极材料及其制 备工艺是影响电化学电容性能的主要因素。IrO2具有 较好的电容存储能力及电化学稳定性,是理想的电容 材料^[4],但单组份时并不能充分发挥其性能; IrO₂ 价 格昂贵也限制了其广泛应用。与非贵金属氧化物复合 进一步提高其性能是目前的重要研究方向之一。添加 适量的 SnO₂^[5], MnO₂^[6], CeO₂^[7]等在提高电极材料的 活性及降低成本方面都取得不错的效果。第二组元一 方面作为 IrO₂ 的载体提高了氧化物的分散性;另一方 面与IrO2相互作用产生协同效用提高了IrO2的电荷储 存能力^[8]。Ta₂O₅与 IrO₂复合被公认为最优秀的析氧钛 阳极^[9-12],而对 IrO₂-Ta₂O₅复合氧化物作为电容材料 的研究报道较少。H. R. Chen 等人^[13]的研究结果表明 在 250 ℃退火的 RuO₂-Ta₂O₅ 电极比电容可达 170 F g⁻¹ (RuO₂),并表现出优异的稳定性。Jow 等人^[14]认为 Ta₂O₅能够拓宽RuO₂-Ta₂O₅的电位窗口,朱君秋等人^[15] 研究了成分配比对 RuO₂-Ta₂O₅ 复合氧化物电容性能 的影响,结果表明,当 Ta_2O_5 含量为70mol%时,比电 容高达 621.2 F g⁻¹ (RuO₂)。但钌氧化物电极通过循环 伏安[16,17]和充放电测试[18-20]发现电容性能会逐渐减 弱。氧化铱电极在强酸中具有较高的稳定性及抗腐蚀 性[18],作为电容材料有望克服氧化钌电极的缺陷。鉴

于此,本实验采用低温热分解法制备成分不同的 Ti/IrO₂-Ta₂O₅电极,通过XRD、CV,EIS和恒流充放 电等技术研究Ta₂O₅含量对IrO₂-Ta₂O₅电极结构和电 容性能的影响。

1 实 验

选用工业喷砂处理的 TA2 钛板作为基体,除油处 理后在 5%的草酸和 20%的浓硫酸溶液中刻蚀 1 h,再 用去离子水冲洗,放入无水乙醇中备用。制备样品 IrO₂ 的载量为 0.9 mg/cm²,以氯铱酸(Ir 的质量分数为 35%) 和含钽 100 g/L 的五氯化钽正丁醇溶液为原溶液,金 属离子以铱:钽摩尔比 10:0,8:2,7:3,6:4,4:6,2:8 量取溶液,分别溶入到无水乙醇中,超声震荡使溶液 混合均匀,静置 10 h。取适量溶液涂敷在钛基体上, 放入红外灯下干燥 6 min,然后在 370 ℃马弗炉中退 火 12 min,如此重复涂敷,直到溶液全部涂完,然后 在 370 ℃马弗炉中热氧化 1 h,空冷。

采用X射线衍射仪(Rigaku; Ultime III, Japan, XRD) 对 Ti/IrO₂-Ta₂O₅电极进行物相分析。采用饱和甘汞电 极为参比电极,大面积钛板为辅助电极,制备的电极 材料作为工作电极(测试面积 1 cm²)。电解质为 0.5 mol/L H₂SO₄溶液,在上海辰华 CHI660D 电化学工作 站上测试循环伏安曲线,扫描速度是 10 mV/s,电势 窗口为 0.0~1.1 V。在 AutolabPGS1-302N 电化学工作 站上测试交流阻抗谱和恒流充放电曲线。阻抗谱测试 电位为 0.75 V,振幅为 10 mV,频率区间为 0.1 Hz~10

收稿日期: 2016-09-07

基金项目:国家自然科学基金(11374053);福建省自然科学基金项目(2015J01190)

作者简介: 贺 冲, 男, 1989 年生, 硕士生, 福州大学材料科学与工程学院, 福建 福州 350108, E-mail: 17805973770@163.com

kHz。恒流充放电测试电流密度为1 mA/cm²,电位区 间为 0.0~1.1 V。

2 结果与讨论

2.1 XRD 分析

图 1 为 Ti/IrO₂-Ta₂O₅ 电极的 XRD 图谱。IrO₂ 涂层 在 2 θ 为 28.0 °和 34.7 °处出现明显的金红石相衍射峰。 但随着 Ta₂O₅ 的加入量增加,表征金红石相的衍射峰 逐渐减弱,非晶包逐渐显现,表明加入 Ta 后会降低 IrO₂ 的晶化程度^[21]。对 XRD 图谱进行多峰分离可计算出 不同比例的 Ti/IrO₂-Ta₂O₅结晶度^[22],如图 2 所示。当 Ta 含量 <40 mol%时,结晶度随 Ta 含量增加急剧降低, 当 Ta 含量 >40 mol%时,结晶度随 Ta 含量的增加变 化趋缓。当 Ta 含量为 60 mol%时, IrO₂-Ta₂O₅ 涂层结 晶度为 6.4%,当 Ta 含量达到 80 mol%时,涂层的结 晶度几乎为零。若是 Ta 涂层,除了钛基体衍射峰外, 只有非晶包,因为 Ta₂O₅结晶温度较高。

2.2 循环伏安分析

图 3 为不同配比的 Ti/IrO₂-Ta₂O₅ 电极的循环伏安 曲线。从图可知, IrO₂ 涂层的循环伏安面积最小,且 几乎未出现氧化还原峰。这与纯 IrO₂ 涂层结晶度高不 利于质子的传导有关。随 Ta₂O₅ 含量增加,循环伏安 曲线的面积逐渐增大,伏安响应电流逐渐升高,说明 IrO₂-Ta₂O₅ 涂层的电荷储存能力逐渐增强。在 Ta 含量 为 60 mol%时,IrO₂-Ta₂O₅ 涂层的伏安面积达到最大 值,且氧化还原峰最为显著。当 Ta 含量继续增加到 80 mol%时,伏安曲线面积迅速变小,仅次于IrO₂ 涂 层且曲线形状与其它组分涂层有明显差异,在 0.0~0.5 V时电流响应明显变慢。

- 图 1 不同 Ta 含量的 Ti/IrO₂-Ta₂O₅ 电极的 XRD 图谱
- Fig.1 XRD patterns of the Ti/IrO₂-Ta₂O₅ electrodes with different Ta contents: (a- 0 mol%, (b- 20 mol%, c- 30 mol%, d- 40 mol%, e- 60 mol%, f- 80 mol%, g- 100 mol%)

图 2 不同 Ta 含量的 Ti/IrO₂-Ta₂O₅ 电极的结晶度

Fig.2 Crystallinity degree of the Ti/IrO₂-Ta₂O₅ electrodes as a function of the Ta content. Experiment data (irregular curves) and fitted curves (smooth curves) corresponding to the IrO₂ (110) and (101) profiles as well as to the (010) Ti profiles of the Ti/IrO₂-Ta₂O₅ electrodes, with different Ta contents: (a) 0 mol%, (b) 20 mol%, (c) 30 mol%, (d) 60 mol%, (e) 80 mol%; (f) degree of crystal linity of the IrO₂-Ta₂O₅ coatings as a function of the Ta content

导电性下降可能由两方面原因造成:一是较多的 Ta_2O_5 稀释了 IrO_2 颗粒,导致 IrO_2 颗粒之间的连续性 隔断。IrO₂具有良好的电子导电能力,而 Ta₂O₅是半 导体氧化物,导致电子导电性降低;二是 IrO2的结晶 度随 Ta₂O₅含量增加而降低,从而影响了导电性能^[14]。 积分电量 q*与涂层中活性物质成正比,因此可用积分 电量 q*代表涂层中的活性物质。图 4 为积分电量与 Ta 含量的关系。从图可知,虽然 40 mol% 和 60 mol% Ta 的电极的积分电量 q*相差不大,但两电极的循环伏安 曲线的氧化还原峰却不同,含 60 mol%Ta 的电极的氧 化还原峰较为明显,这说明参与氧化还原反应的质子数 多。但左端的电流响应速度小,这应该是电极导电性相 比含 40 mol%Ta 的电极有所降低所致。涂层中晶态与 非晶态的比例不同引起涂层内外质子转移和电子导电 能力的不同,进而造成了电极材料伏安特性的变化[21]。 上述结果表明低温热分解法制备的IrO2-Ta2O5电极在Ta 原子为 40 mol%~60 mol%区间有较高的储存电荷能力。

2.3 交流阻抗分析

图 5a 为 Ti/IrO₂-Ta₂O₅ 电极的阻抗谱,横坐标代表 电极阻抗性质,纵坐标代表容抗性质。从容抗 Z"可知, 随 Ta₂O₅ 含量增加 Z"先减小后增大,当 Ta 的含量增加 到 60 mol%时, Z"最小。电极的电容 C 与容抗 Z"成反 比 (Z"= -1/2πCf)说明此时电容值最大。低频区曲线 与 Z"越接近平行,表明其越具有理想的电容特性。含 80 mol% Ta 的电极曲线在实验范围内与 Z"不平行,说 明 Ta 含量过高不适合做电容。采用图 5b 的拟合电路 图对阻抗谱进行拟合,考虑到氧化物涂层是多孔涂层, 用常相角元件 CPE 代替纯电容 C 元件。从图 5c 可看

Fig.3 Cyclic voltammetry curves of Ti/IrO₂-Ta₂O₅ electrodes, measured in 0.5 mol/L H₂SO₄ at 10 mV/s, with different Ta contents: (a- 0 mol%, b- 20 mol%, c- 30 mol%, d- 40 mol%, e- 60 mol%, and f- 80 mol%

图 4 Ta 含量对 Ti/IrO₂-Ta₂O₅ 电极的伏安积分电量 *q**的影响 Fig.4 Effect of Ta content on the Voltammetric charge *q** of Ti/IrO₂-Ta₂O₅ electrodes

图 5 不同 Ta 含量的 Ti/IrO2-Ta2O5 电极交流阻抗谱及其等效电路

Fig.5 Nyquist plots of the Ti/IrO₂-Ta₂O₅ electrodes with different Ta₂O₅ contents and their electrical equivalent circuit: (a) the Nyquist plots, (b) the electrical equivalent circuit used for fitting the impedance spectra, and (c) the Nyquist plots of the impedance data (scattering symbols) and the fitting results (solid lines) in the high-frequency region

出高频区似被压瘪的半圆,其半径反映了涂层/电解质 界面电荷传递引起的电阻 R_{ct},其大小与电极的电子导 电性能和质子传导性能密切相关。图 6 给出了电荷转 移电阻 R_{ct}与 Ta 含量的关系。由图可知,电荷转移电 阻随 Ta 含量的增加呈先减小后增大的变化趋势。这表 明当涂层中不含 Ta₂O₅ 时, IrO₂ 电极的电荷转移电阻 $R_{\rm cr}$ 较大。虽然晶态的 IrO₂有利于电子导电,但不利于 质子传导,其R_{ct}较大。加入Ta₂O₅后,由于涂层中非 晶态物质增多,结构的松弛性质使其有利于质子传导。 在 Ta 含量为 20 mol%~60 mol%时, IrO2-Ta2O5 涂层中 晶态与非晶态共存。当 Ta 含量较低时, 电子以导电为 主,当 Ta 含量较高时,质子扩散传导能力提高, R_{ct} 值在 Ta 含量为 20 mol%~40 mol%范围变化较小。当 Ta 含量为 60 mol%时,晶化程度继续降低,质子传导 作用大大增加,尽管此时 Rct 值比 40% mol 的电极有 所增加,但仍低于 IrO2 电极和非晶态电极。当进一步 提高 Ta 含量时,由于 IrO2的晶化程度迅速降低,导 致电子导电能力快速下降,电子导电和质子传导的失 衡导致电荷转移电阻急速增大。

2.4 恒流充放电分析

图 7 为电极恒流充放电曲线随 Ta 含量的变化关 系。从图可知,充放电曲线有良好的对称性,说明电 极材料有较好的电化学可逆性。当 Ta 的含量为 60 mol%时,充放电曲线有最大的时间跨度,放电时间也 长,表明其有最大的电荷存储能力。该曲线在 0.2~0.8 V 区间有明显的弧线,即该区间涂层产生了较大的赝 电容反应。图 8 为不同配比的 Ti/IrO₂-Ta₂O₅ 电极的比 电容。比电容随 Ta 含量的增加先增大后减小。当 Ta 含为 60 mol%时,电极有最大的比电容值(达到 239.2 F/g),比未添加 Ta 的 Ti/IrO₂ (54.1 F/g)的比电容提高了 近 4 倍。

Fig.7 Charge-discharge curves of the electrodes as a function of the Ta content

图 8 不同配比的 Ti/IrO2-Ta2O5 电极的比电容

3 结 论

 1)随Ta含量的增加涂层中IrO₂的晶化程度降低,
80 mol%Ta的涂层几乎为非晶态,说明Ta₂O₅能抑制 IrO₂的结晶。当Ta的含量为 60 mol%时晶化度约为 6.4%。

2) 电荷转移电阻 *R*_{ct}随 Ta 含量的增加呈先减小后 增大的变化趋势。

3) 随 Ta 含量的增加,电极的积分电量 q*和比电 容先增大后减小。含 60 mol% Ta 的电极比电容可达 239.2 F/g,比 IrO₂电极的比电容提高了近 4 倍,说明 加入适当的 Ta₂O₅能提高电极材料的比电容。

参考文献 References

- [1] Zheng J P, Huang J, Jow T R. Electrochem Soc[J], 1997, 144(6): 2026
- [2] Lokhande C D, Dubal D P, Joo O S. Current Applied Physics

[J], 2011, 11(3): 255

- [3] Sarangapan S, Tilak B V, Chen C P. J Electrochem Soc[J], 1996, 143(11): 3791
- [4] Zhang Y, Feng H, Wu X B et al. International Journal of Hydrogen Energy[J], 2009, 34(11): 4889
- [5] Li Beibei(李贝贝), Shao Yanqun(邵艳群), Zhu Junqiu(朱君秋) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2012, 41(11): 2041
- [6] Grupioni A A F, Arashiro E, Lassali T A F. Electrochimica Acta[J], 2002, 48(4): 407
- [7] Lou Changying(娄长影), Zhu Junqiu(朱君秋), Shao Yanqun (邵艳群) et al. Journal of The Chinese Society of Rare Earths(中国稀土学报)[J], 2014(02): 205
- [8] Hu C C, Chang K H, Wang C C. *Electrochimica Acta*[J], 2007, 52(13): 4411
- [9] Xin Yonglei (辛永磊), Xu Likun (许立坤), Wang Juntao(王均 涛) et al. Rare Metal Materials and Engineering(稀有金属材 料与工程)[J], 2010, 39(11): 1903
- [10] Lee J Y, Kang D K, Lee K et al. Materials Sciences and Applications[J], 2011, 02(04): 237
- [11] Hu J M, Zhang J Q. Journal of Materials Science[J], 2003, 38: 705
- [12] Li B S, Lin A, Gan F X. Transactions of Nonferrous Metals

Society of China[J], 2006, 16(5): 1193

- [13] Chen H R, Lai H H, Jow J J. Materials Chemistry and Physics[J], 2011, 125: 652
- [14] Jow J J, Lai, H H, Chen H R et al. Electrochimica Acta[J], 2010, 55(8): 2793
- [15] Zhu Junqiu(朱君秋), Lu Hengda (路恒达), Wang Xin (王欣) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(03): 555
- [16] Kim H, Popov B N. Journal of Power Sources[J], 2002, 104(1): 52
- [17] Jang J H, Machida K, Kim Y et al. Electrochimica Acta[J], 2006, 52(4): 1733
- [18] Hu C, Wang C. Electrochemistry Communications[J], 2002, 4(7): 554
- [19] Mondal S K, Munichandraiah N. Journal of Power Sources[J], 2008, 175(1): 657
- [20] Cao F, Prakash J. Journal of Power Sources[J], 2001, 92(1-2):40
- [21 Shao Y Q, Yi Z Y, He C et al. Journal of the American Ceramic Society[J], 2015, 98(5): 1485
- [22] Vercesi G P, Salamin J Y, Comninellis Ch. Electrochimica Acta[J], 1991, 36(5-6): 991

Influence of Ta Contents on the Structure and Capacitive Performance of Ti/IrO₂-Ta₂O₅ Electrodes

He Chong¹, Chen Zhijie¹, Lin Deyuan², Chen Yunxiang², Shao Yanqun¹, Yi Zhaoyu¹, Tang Dian¹ (1. Fuzhou University, Fuzhou 350108, China)

(2. Electric Power Research Institute of State Grid Fujian Electric Power Co. Ltd, Fuzhou 350007, China)

Abstract: Ti/IrO₂-Ta₂O₅ electrodes were prepared by a low thermal decomposition method. The influence of Ta contents on the microstructure and capacitive performance of the Ti/IrO₂-Ta₂O₅ electrodes was investigated by XRD, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge tests. The results show that Ta₂O₅ can inhibit crystallization of the IrO₂. With increasing Ta content, the crystallization degree decreases. When the content of Ta is 60 mol%, the electrode with a content of 6.4% crystalline structure has a superior capacitive performance of 239.2 g/F, which is considerably higher than that of IrO₂ electrode (54.1 g/F). **Key words:** IrO₂; Ta₂O₅; supercapacitors; AC impedance spectroscopy

Corresponding author: Shao Yanqun, Associate Professor, School of Materials Science & Engineering, Fuzhou University, Fuzhou 350108, P. R. China, E-mail: yqshao1989@163.com