La³⁺掺杂 TiO₂ 粉体的化学沉淀法制备条件优化

杜景红,严继康,张家敏,刘意春,甘国友,易健宏

(昆明理工大学, 云南 昆明 650093)

摘 要:采用化学沉淀法制备 La³⁺掺杂 TiO₂ 粉体,并用正交实验方法对制备工艺进行优化,通过 SEM、XRD、XPS 和 UV-Vis 对 TiO₂ 粉体的形貌、结构、光吸收性能进行了表征。结果表明: 煅烧温度和 La³⁺掺杂量对 TiO₂ 粉体光吸收性能 具有显著影响;不同煅烧温度得到的 La³⁺掺杂 TiO₂ 均以锐钛矿结构为主;升高煅烧温度可以增强 La³⁺掺杂 TiO₂ 在紫外 光波段的吸光强度; La³⁺掺杂可以改善 TiO₂ 粉体的团聚,减小 TiO₂ 的禁带宽度,同时导致 TiO₂ 表面吸附一定数量的 羟基。最优的制备条件为: 煅烧温度 800 ℃,La³⁺掺杂量 0.6% (摩尔分数),反应温度为 90 ℃,反应液 pH 值为 8, 此条件下获得的 TiO₂ 粉体可见光性能最优。

关键词:二氧化钛; La³⁺掺杂; 化学沉淀法; 优化 中图法分类号: O643; O644 文献标识码: A

当今环境污染问题变得日益严重,半导体光催化作 为一种新型的环境净化处理技术已经引起人们的广泛 关注[1,2]。半导体光催化是在光和半导体催化剂作用下 的催化化学反应。在众多的光催化材料中,TiO,由于 高的化学稳定性、无毒、低成本和高光催化活性,成为 当今最具竞争力的半导体光催化材料^[3,4]。然而 TiO₂ 它 自身的局限性却限制了其大规模的应用,一个是 TiO2 材料本身的禁带宽度较宽(约 3.2 eV),处于 380 nm 以 下的紫外光才能激活催化反应,而紫外光仅占太阳光的 5%左右,使得其对太阳光的利用率较低^[5];另一个则 是其光生电子和空穴的复合率过高^[6],降低了光催化效 率,限制了光催化反应速度的提高。因此,为了解决 TiO₂ 太阳能利用率和光量子效率偏低的问题,各国科 学家通过各种手段对其进行改性,这些手段的实质是扩 宽 TiO₂的光谱响应范围,并且加速光生电子-空穴的迁 移以减少光生载流子的复合。

稀土元素具有独特的 4f 亚层电子结构,容易产生 多电子组态,而且它的氧化物具有良好的热稳定性,多 种晶型,较强的吸附选择性,电子型导电性,独特的化 学催化、电催化及发光性质等特点。另外,稀土离子的 基态和激发态能量比较接近,当其吸收部分可见光后, 可以激发引起 f-f 电子跃迁,使得 f 电子从基态跃迁到 激发态,从而扩宽光催化剂的光吸收波段,提高光催化 性能^[7-9]。本研究采用化学沉淀法制备稀土金属 La³⁺掺 杂的 TiO₂粉体,通过正交实验分析的方法,确定 La³⁺ 文章编号: 1002-185X(2015)11-2821-05

掺杂的 TiO₂ 光催化剂最适宜的制备工艺参数,采用 XRD、SEM 和紫外-可见光吸收光谱等手段,对掺杂改 性后的 TiO₂ 粉体进行了表征。

1 实 验

主要实验试剂有:二氧化钛(CP),硝酸镧合六水 (AR),丙烯酸-2-丙烯酸酰胺-2-甲基丙磺酸共聚物,氨 水(氨含量 25%~28%),无水乙醇(AR),去离子水。

实验设备有: AS10200 超声波清洗器, AR2140 型电子分析天平, EMS-18A 恒温磁力搅拌器, SHZ-D 循环水式真空泵, 202-5 电热恒温干燥箱, SX-5-12 箱 式电阻炉, D8-Advance X射线衍射 (XRD) 仪, PHI550 X射线光电子能谱 (XPS) 仪, U-4100 紫外-可见近红 外分光光度计。

采用化学沉淀法制备 La 离子掺杂的 TiO₂ 光催化 剂,实验选取 La³⁺掺杂量(摩尔分数,%)(A)、反 应液 pH 值(B)、煅烧温度(C)、溶液温度(D)4个因 素,每个因素选取3个水平,按照四因素3水平(L₉3⁴) 设计了正交实验,如表1所示。根据所选的因素水平, 在不同条件下进行了9组实验,考察四因素对TiO₂光 催化剂光吸收性能的影响。

2 结果与讨论

2.1 La³⁺掺杂 TiO₂粉体的光吸收性能影响因素分析 根据设计的正交实验进行掺杂 TiO₂样品的制备,

基金项目:国家自然科学基金(51362017)

收稿日期: 2014-11-10

作者简介: 杜景红, 女, 1972年生, 博士, 副教授, 昆明理工大学材料科学与工程学院, 云南 昆明 650093, E-mail: 2506990447@qq.com

. .

表 1 正交实验因素和水平设计表 (L₉3⁴)

Table 1	Factors and	1 levels	design for orthog	onal experiment
Level	А	В	С	D
	Amount of	ъЦ	Calcinating	Solution
	La ³⁺ /mol%	рн	temperature/℃	temperature/°C
1	0.2	8.0	700	50
2	0.6	10.0	800	70
3	1.0	12.0	900	90

采用紫外-可见光吸收光谱来表征样品的光吸收性能, 对样品的吸收光谱,根据切线法估算样品的光吸收带 边,将所获得的光吸收带边的结果作为正交实验的考 核指标。光吸收带边越大,可见光吸收性能越好。采 用极差法对正交实验进行分析,相关结果见表 2。

由表 2 的结果可知,各因素对 TiO₂ 光吸收带边影 响的显著性水平依次为: 煅烧温度(C)> La³⁺掺杂量 (A)>溶液温度(D)>反应液 pH 值(B)。由此可见,采用 化学沉淀法制备 La³⁺掺杂 TiO₂ 粉体时,煅烧温度和掺 杂量是影响稀土掺杂 TiO₂ 光催化剂的主要因素。同时 由极差分析可知,化学沉淀法制备 La³⁺掺杂 TiO₂ 粉体 的最佳实验条件为: C₂A₂D₃B₁,即煅烧温度为 800 ℃, La³⁺离子掺杂量为 0.6% (摩尔分数),溶液温度为 90 ℃,反应液 pH 值为 8.0。该条件下获得的 TiO₂ 光 吸收带边最大,为 395 nm。

图 1 为未掺杂和最优工艺条件下得到的 La³⁺掺杂 TiO₂样品的 SEM 照片。由图可以看出,未掺杂的 TiO₂ 粉体颗粒团聚现象较为明显,掺杂 La³⁺后 TiO₂粉体的 团聚减少,从而有助于增大比表面积,提高光催化效应。 2.2 不同煅烧温度下 TiO₂粉体的紫外-可见光谱分析

图 2 为不同煅烧温度处理的 La^{3+} 掺杂 TiO_2 和纯 TiO_2 的紫外-可见光吸收光谱。从图中可以发现,同纯

表 2 正交实验结果与分析表 Table 2 Orthogonal experiment results and analysis table

	А	В	С	D	Linht
Serial No.	Amount of La ³⁺ /mol%	pН	Calcinating temperature/ °C	Solution temperature/ °C	absorption band edge/nm
1	0.2	8.0	700	50	389.0
2	0.2	10.0	800	70	390.2
3	0.2	12.0	900	90	389.6
4	0.6	8.0	800	90	395.0
5	0.6	10.0	900	50	389.6
6	0.6	12.0	700	70	387.2
7	1.0	8.0	900	70	387.8
8	1.0	10.0	700	90	387.8
9	1.0	12.0	800	50	388.4
K_1	389.60	390.60	388.00	389.00	
K_2	390.60	389.20	391.20	388.40	
K_3	388.00	388.40	389.00	390.80	
R	2.60	2.20	3.20	2.40	

图 1 TiO₂粉体的 SEM 照片

Fig.1 SEM images of TiO_2 powder: (a) undoped and (b) La ³⁺ doped TiO_2

Fig.2 UV-Vis absorption spectra of samples

TiO₂相比较,不同煅烧温度处理的La³⁺掺杂TiO₂样品 并没有使其吸收带边位置发生大的移动,只是在一定 程度上提高了TiO₂在紫外光波段的吸光强度。根据 Tauc公式^[10],做各样品的(*Ahv*)^{1/2}-*hv*的关系图,采用 切线法估算了样品的禁带宽度,见表 3。结果表明, 纯TiO₂样品的禁带宽度约为 3.16 eV,而La³⁺掺杂后 样品的禁带宽度减小为 3.06~3.04 eV。这可能是由于 La³⁺的掺杂在禁带中产生了新的杂质能级,导致f电 子与TiO₂导带或者价带发生电荷跃迁,降低了电子跃 迁所需的激发能量^[11]。

2.3 不同煅烧温度下 La³⁺掺杂 TiO₂ 粉体的 XRD 分析

图 3 为不同煅烧温度处理后 TiO₂样品的 XRD 图 谱。由图可知,制备的 TiO₂光催化剂以锐钛矿结构为

表 3 TiO2样品的禁带宽度 Table 3 Band gaps of samples

Tuble e Dund gups of Sumples				
Calcinating temperature/°C	$E_{\rm g}/{ m eV}$			
700	3.06			
800	3.04			
900	3.06			
Pure TiO_2	3.16			

主晶相,这表明稀土 La^{3+} 的掺杂并没有改变 TiO_2 的主 晶型结构。井立强等研究表明^[12,13],掺杂离子能否进 入 TiO_2 晶格形成稳定固溶体,是与掺杂离子的半径有 关的。由于 Ti^{4+} 半径是 0.065 nm 左右, La^{3+} 半径是 0.115 nm 左右, La^{3+} 半径远远大于 Ti^{4+} ,根据相关理论, La^{3+} 取代晶格中 Ti^{4+} 的可能性较小。从 TiO_2 - La_2O_3 相 图中(见图 4)也可以发现,当 La 含量较小时,即使 在 1300 ℃高温煅烧的条件下,La³⁺也很难存在于 TiO₂ 晶格当中,最终 La³⁺是在晶界处析出,形成第二相^[14]。 本研究中 La³⁺掺杂 TiO₂ 粉体的煅烧温度远低于 1300 ℃,因此在掺 La 样品的 XRD 图谱没有观察到 杂质物衍射峰的存在,说明未出现掺杂离子的团聚, 掺杂部分在宏观上还未独立成一相。

根据 XRD 图谱,采用式(1)计算 TiO₂物相中锐钛 矿结构和金红石结构的相对含量^[15],列于表 4 中。

$$X_{\rm A} = \frac{1}{1 + \frac{I_{\rm R}}{I_{\rm A} \cdot K}} \tag{1}$$

图 3 不同煅烧温度的 La³⁺掺杂和未掺杂 TiO₂ 粉体的 XRD 图谱

图 4 TiO₂-La₂O₃相图 Fig.4 TiO₂-La₂O₃ phase diagram

Table 4 XRD an	alysis results of TiO	2 powders	
Calcinating	Phase content/%		
temperature/°C	Anatase	Rutile	
700	100	0	
800	98.7	1.7	
900	98.6	1.4	
Pure TiO ₂	98.7	1.3	

表 4 TiO₂粉体的 XRD 分析计算结果

式中, *I*_A和 *I*_R分别为 XRD 谱中锐钛矿结构(110)晶面 和金红石结构的(101)晶面的衍射峰高或峰面积; *K* 是 常数; *X*_A为锐钛矿结构的相对含量。

由表 4 数据可以看出, La³⁺掺杂样品 700 ℃煅烧

后未出现金红石相,当煅烧温度超过 700 ℃时,未掺 杂和 La³⁺掺杂的 TiO₂均有部分锐钛矿结构转变为金红 石结构,随着热处理温度的升高,金红石结构的含量 没有大幅度增加。目前的研究发现^[16-18],单纯的锐钛 矿型或者金红石型结构 TiO₂的光催化活性均较差,反 而当 2 种晶型结构按一定比例存在时,有更高的光催 化活性。这是因为 2 种晶相结构 TiO₂的 Fermi 能级不 相同,当二者按合适比例共同存在时,在两相界面之 间会产生势垒,从而有利于光生电子和空穴的转移及 分离,减少光生载流子的复合,进一步提高光催化活 性,该效应就被称为混晶效应。因此,800 ℃煅烧后 La³⁺掺杂的 TiO₂样品表现出一定程度上的光谱响应范 围拓宽,可能是与其中存在一定比例的锐钛矿和金红 石晶型结构相关。

2.4 La³⁺掺杂 TiO₂ 粉体的 XPS 分析

图 5 是未掺杂和最优工艺条件下 La³⁺掺杂 TiO₂样 品的 Ti 2p 窄扫描 XPS 能谱。从图中可以发现,经过 拟合后 2 个样品中的 Ti 2p 的峰均是由 Ti 2p_{3/2} 和 Ti 2p_{1/2} 2 个峰所组成的。其中,未掺杂 TiO₂样品中, Ti 2p_{3/2} 和 Ti 2p_{1/2} 2 个峰的结合能分别为 458.83 和 464.42 eV。La³⁺掺杂 TiO₂样品 Ti 2p_{3/2} 和 Ti 2p_{1/2} 2 个 峰的结合能分别为 458.59 和 464.32 eV,这些峰都是 TiO₂中的 Ti⁴⁺的典型特征峰^[19]。图 5 中未发现 Ti³⁺的 特征峰,这说明采用化学沉淀法制备 La³⁺掺杂 TiO₂粉 体时,Ti 的价态为 Ti⁴⁺,没有因为 La³⁺的引入而发生 变化。

图 6 是未掺杂和 La³⁺掺杂 TiO₂样品的 O1s 窄扫描 XPS 能谱。从图中可以发现,O1s 特征峰经过拟合

Fig.6 O 1s XPS spectra of TiO₂: (a) undoped and (b) La³⁺ doped

后出现了不同的分峰,这表明样品中氧是以不同的形 式存在的。由图 6a 可知,未掺杂 TiO₂样品中,O 1s 特征峰可以拟合为 2 个峰,轨道结合能在 530.08 eV 的强峰,对应于 TiO₂中的 Ti-O 键,即 TiO₂晶格中的 晶格氧;位于 532.22 eV 的弱峰则对应于 TiO₂表面的 吸附氧的峰。而图 6b La³⁺掺杂后 TiO₂样品的 O 1s 特 征峰除了轨道结合能在 529.82 eV 的晶格氧峰和 532.47 eV 的表面吸附氧峰,还在 531.25 eV 出现了一 较弱峰,这是表面羟基氧的峰。因此,La³⁺掺杂使 TiO₂ 表面出现了羟基基团,这在光催化反应中,有利于羟 基自由基的形成,使得光催化剂吸附的有机物被迅速 的氧化和分解为 CO₂、H₂O 等无机小分子物质。

3 结 论

 化学沉淀法制备 La³⁺掺杂 TiO₂ 工艺中,各因 素对 La³⁺掺杂 TiO₂ 的光吸收性能影响的显著性水平依 次为:煅烧温度> La³⁺掺杂量>溶液温度>反应液 pH 值。

2) 煅烧温度的改变可以提高 La³⁺掺杂 TiO₂ 在紫 外光波段的吸光强度,但不能使 TiO₂吸收带边位置发 生明显移动。

3) La³⁺掺杂未改变 TiO₂ 的主晶型结构,但可以减 少 TiO₂ 粉体的团聚,减小 TiO₂ 的禁带宽度,并且导 致 TiO₂表面吸附一定数量的羟基,提高光催化效应。

4) 化学沉淀法制备 La³⁺掺杂 TiO₂ 的最佳工艺参数为: 煅烧温度 800 ℃, La³⁺掺杂量 0.6%(摩尔分数), 溶液温度 90 ℃,反应液 pH 值 8.0。

参考文献 References

- Zhou Zhigang(邹志刚), Zhao Jincai(赵进才), Fu Xianzhi(付贤智) et al. Journal of Functional Materials(功能材料)[J], 2004, 35(Z1): 83
- [2] Chen X, Samuel S M. Chem Rev [J], 2007, 107: 2891
- [3] Lee A C, Lin R H, Yang C Y et al. Materials Chemistry and Physics[J], 2008, 109: 275
- [4] Kment S, Kmentova H, Kluson P et al. Journal of Colloid and Interface Science [J], 2010, 348: 198
- [5] Mizukoshi Y, Ohtsu N, Semboshi S et al. Applied Catalysis B: Environmental[J], 2009, 91: 152
- [6] Carneiro J O. Teixeira V, Martins A J *et al. Vacuum* [J], 2009, 83: 1303
- [7] Štengl V, Bakardjieva S. Materials Chemistry and Physics[J], 2009, 114: 217
- [8] Ren Min(任 民), Zhang Yujun(张玉军), Liu Shuwen(刘素文) et al. Ceramics(陶瓷)[J], 2006(7): 26
- [9] Zhang Y, Zhang H, Xu Y et al. Journal of Solid State Chemistry[J], 2004, 177: 3490
- [10] Buddee S, Wongnawa S, Sirimahachai U et al. Materials Chemistry and Physics[J], 2011, 126: 167
- [11] Xu A W, Gao Y, Liu H Q. J Catal[J], 2002, 207: 151
- [12] Jing Liqiang(井立强), Zhang Xin(张 新), Qu Yichun(屈宜春) et al. Journal of the Chinese Rare Earth Society(中国稀土学

报)[J], 2004, 22(6): 746

- [13] Jing Liqiang(井立强), Sun Zhihua(孙志华), Yuan Fulong(袁 福龙) et al. Scientia Sinica Chimica(中国科学 B 辑化学)[J], 2006, 26(1): 53
- [14] Yi Jianhong(易健宏), Yan Jikang(严继康), Gan Guoyou(甘国友). The 151st Chinese Engineering Science and Technology-Symposium-Development Forum of Powder Metallurgical Science and Technology(中国工程科技论坛第151场-粉末冶金科学与技术发展前沿论坛)[C]. Changsha: Chinese Academy of Engineering, 2012
- [15] Chen Jianhua(陈建华), Gong Zhuqing(龚竹青). Ion Doping of Titanium Dioxide Semiconductor Photocatalytic Materials(二氧化钛半导体光催化材料离子掺杂)[M]. Beijing: Science Press, 2006
- [16] Bickley I B, Gonzalez-Carreno T, Lees J et al. J Solid State Chem[J], 1991, 92: 178
- [17] Tao Yuewu(陶跃武), Zhao Mengyue(赵梦月), Chen Shifu (陈士夫). Chinese Journal of Catalysis(催化学报)[J], 1997, 18(4): 345
- [18] Beydoun D, Amal R, Low G et al. J Nanoparticle Research[J], 1999, 1: 439
- [19] Yuan S, Sheng Q R, Zhang J L et al. Microporous and Mesoporous Materials[J], 2008, 110: 501

Preparation Optimization of La³⁺ Doped TiO₂ Powder by Chemical Precipitation

Du Jinghong, Yan Jikang, Zhang Jiamin, Liu Yichun, Gan Guoyou, Yi Jianhong

(Kunming University of Science and Technology, Kunming 650093, China)

Abstract: La^{3+} doped TiO₂ powder was prepared by chemical precipitation and the technique was optimized by an orthogonal experiment. The morphology, structure and light absorption properties of TiO₂ powders were characterized by SEM, XRD, XPS and UV-Vis. The results show that the effect of the calcinating temperature and the amount of La^{3+} on optical absorption properties of TiO₂ is significant. The main crystal structure of La^{3+} doped TiO₂ powder at different calcinating temperatures is anatase. Higher calcinating temperature can enhance the absorption intensity of La^{3+} doped TiO₂ in the UV band. Doping La^{3+} can improve agglomeration of TiO₂ powder and narrow the band gap of TiO₂. In addition, a certain amount of hydroxyls are also adsorbed on the surface of TiO₂ due to La^{3+} doping. The optimal preparation conditions of La^{3+} doped TiO₂ powder are as follows: the calcinating temperature 800 °C, the amount of La^{3+} 0. 6 mol%, the solution temperature 90°C, and the pH value 8.0. TiO₂ powder prepared under the above conditions has the optimal visible light property. **Key words:** titanium dioxide; La^{3+} doping; chemical precipitation; optimization

Corresponding author: Du Jinghong, Ph. D., Associate Professor, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China, E-mail: 2506990447@qq.com