P-Cr-Ti 复合变质 Al-25%Si 合金时 Cr-Ti 作用机理

陈淑英,刘学,岳旭东,常国威

(辽宁工业大学, 辽宁 锦州 121001)

摘 要:采用 P-Cr-Ti 复合变质处理 Al-25%Si (质量分数) 合金,重点研究了凝固组织的变化以及 Cr、Ti 元素的作用机 理。结果表明:与单一的 P 变质相比,经 P-Cr-Ti 复合变质后,Al-25%Si 合金凝固组织中初生 Si 的尺寸减小了 12.2%~51.7%,并且初生 Si 分布的均匀程度增加。Al-25%Si 合金中 Cr、Ti 主要以 TiAl₃、Ti₇Al₅Si₁₂、Al₇Cr、Al₁₃Cr₄Si₄ 化合物的形式存在,同时有少量的 P 分布在含 Ti 化合物中。含 Ti 化合物呈长条状、短杆状:含 Cr 化合物呈菊花状、 网状,分布在初生 Si 之间。含 Cr、Ti 化合物的数量随冷却速度的增加而增加。变质处理时 Al-6.5%Ti 合金带入的 TiAl₃ 相,具有使初生 Si 持续析出和细化初生 Si 的作用,但细化能力有限。凝固过程中初生 Si 周围形成的含 Cr 化合物和 α_{Cr} 阻止初生 Si 的长大与聚集,促使增加初生 Si 分布均匀程度。

关键词: Al-25%Si 合金; P-Cr-Ti 复合变质; 元素作用机理; 凝固过程
中图法分类号: TG146.2⁺1
文献标识码: A
文章编号: 1002-185X(2017)04-1003-05

过共晶铝硅合金具有低密度、高硬度、耐高温、 耐磨等良好的机械性能^[1-3]。但是过共晶 Al-Si 合金组 织中大块状的初生硅呈尖角状、共晶硅呈粗大针状, 在受到外力作用时,在尖角处容易造成应力集中,出 现裂纹, 且裂纹沿粗大针状共晶硅组织晶界扩展, 导 致组织断裂^[4]。人们采用 P 变质改善 Si 相大小和形貌 问题,初生硅得到了很好的细化效果,但对共晶组织 几乎不起作用^[5-7]。近年来,Liu、Timelli 等人^[8-12] 用 Ti-B 孕育法处理 Al-Si 合金,虽能够细化共晶硅,但 作用不大, 而初生 α-Al 可得到明显细化, 共晶团周围 的 α-Al 形态也发生了明显的变化。Cai Yuanhua、崔华 等人^[13-15]研究了 Cr 在 Al-Si 合金中的作用, Cr 元素可 细化 Si 相,削弱过共晶 Al-Si 合金的宏观偏聚现象, 使 Si 相分布均匀;同时能够抑制合金的再结晶和晶粒 长大,在合金中形成 0.01~0.1 μm 的弥散相,起到强 化合金的效果。虽然近年来人们对 Ti 元素和 Cr 元素 变质 Al-Si 合金做了较多的研究工作,但 P-Cr-Ti 复合 变质对凝固组织作用规律研究还不够系统深入,鲜见 相关公开报道。本实验重点研究 Al-25% Si (质量分数) 合金经 P-Cr-Ti 变质后凝固组织的同时深入研究 Ti、 Cr 元素的作用机理,为充分发挥 Ti、Cr 元素在过共 晶 Al-Si 合金的作用奠定理论基础。

以工业纯 Al、Al-30%Si、Al-6.5%Ti、Al-3.5%Cr 和 Al-13%Si-0.5%P (质量分数)中间合金为原材料, 在电阻炉内,用石墨坩埚熔化工业纯 Al 与 Al-30%Si 中间合金,配成 Al-25%Si 合金,并将铝液在 860 ℃下 保温 10 min,用 0.7%的 C₂Cl₆精炼后保温 10 min,用 2%的 Al-13%Si-5%P 合金进行变质处理后保温 10 min,加入 Al-6.5%Ti 和 Al-3.5%Cr 中间合金,Ti 和 Cr 的加入量分别为 1.5%和 1%,保温 10 min 后用 0.7% 的 C₂Cl₆烷进行二次精炼。当铝液温度降到 760 ℃时 浇注,试样浇注用金属型模具如图 1 所示,材料为 Q235。金属型的加热温度分别为 600、400 和 200 ℃。

1-DMR2100 paperless recorder, 2-quartz tube, 3-thermocouple, 4-metal mold

图1 金属型及冷却曲线测试方法

Fig.1 Metal mold and test method of cooling curves

验

实

1

收稿日期: 2016-04-18

基金项目: 辽宁省高等学校杰出青年学者成长计划(LJQ2014062);国家自然科学基金青年基金(51204092)

作者简介:陈淑英,女,1974年生,博士,副教授,辽宁工业大学材料科学与工程学院,辽宁 锦州 121001,电话: 0416-4199650, E-mail: jinzhouchenshuying@126.com

将热电偶固定在金属型型腔中心,热电偶偶头位 于距试样底部 25 mm 处,用 DMR2100 无纸记录仪记 录温度,如图 1 所示,根据记录结果绘制温度-时间曲 线。在 Axiovert200MAT 金相显微镜下观察金相组织, 用扫描电镜 (SEM) 和美国热电公司的 NORAN-QUEST II型 X 射线能谱仪 (EDS) 进行能谱分析,元 素检测范围为 4Be-92U,用 D/MAX PC-2500 型 X 射 线衍射仪(XRD) 进行物相分析。

以金相照片为对象,用 photoshop 软件中的魔棒 工具和套锁工具依次选取金相照片中的初生硅,再通 过测量分析键,计算出初生硅的像素,与照片的总像 素比即可得到初生硅所占面积比,由此得到初生硅的 数量。用同样的方法测出α相的数量,并计算出共晶 硅的数量。每个试样取7个位置的金相照片进行测量, 去掉最大与最小值,对余下的5个测量结果取平均值, 统计了280000 μm²视场大小的数据。

2 结果与分析

2.1 Al-25%Si 合金加 Cr、Ti 元素后的凝固过程

根据 Al-Cr、Al-Ti 合金平衡相图^[16]可知,用 Al-3.5% Cr 与 Al-6.5% Ti 中间合金配制成 Al-25% Si-1% Cr-1.5% Ti 合 金,在 860 ℃保温时,得到 L+TiAl₃ 的金属熔体,其中的 TiAl₃ 为 Al-6.5% Ti 中间合金带入且未溶解的固相。

对于 Al-25%Si 合金,凝固时只有初生 Si 的析出 和 L→(α +Si)_{共晶}相变发生。对于 Al-25%Si-1%Cr-1.5%Ti 合金,在非平衡凝固的条件下,凝固时熔体中残留的 TiAl₃继续长大,而后初生 Si 析出,由于熔体内存在 成分起伏的现象,为此将有 Al₇Cr 析出和 L+TiAl₃ → α _{Ti}、L+Al₁₁Cr₂→ α _{Ti}包晶相变发生。

金属型预热 400 ℃时试样的冷却曲线如图 2 所示。可以看出,对于 Al-25%Si 合金,约为 735 ℃时熔体中有初生 Si 析出,如图 2 中 B 所示,比平衡凝固时析出温度低了约 23 ℃。而后温度呈波动式下降,表明首批初生 Si 析出后,再析出与长大并非是均匀进行的,在共晶反应之前,在 590~577 ℃范围内初生 Si 的析出和长大速度很快,如图 2 中 H 所示。

对于 Al-25%Si-1%Cr-1.5%Ti 合金,在 Al-25%Si 合金初生 Si 析出之前,同时刻的温度比 Al-25%Si 合 金高约 20℃,并且在约为 770℃时温度下降变慢,如 图 2 中 A 所示,分析认为是由熔体中 TiAl₃继续长大 造成。当温度降低到约为 720℃时曲线出现明显的拐 点,如图 2 中 C 所示,表明熔体中开始析出初生 Si, 而后温度也是呈波动式下降。图 2 中的 D 和 E 处的温 度分别低于 Al-Cr 合金 Al₇Cr 析出温度、Al-Cr 和 Al-Ti 合金包晶反应温度,所以图 2 中的 D 和 E 处曲线出现

 $T_{\rm L}$ -liquidus temperature of Al-25%Si alloy, $T_{\rm E}$ -eutectic temperature of Al-25%Si alloy, $T_{\rm J}$ -peritectic temperature range of Al-Cr and Al-Ti alloy, $T_{\rm Al7Cr}$ -precipitation temperature of Al₇Cr in Al-Cr alloy

- 图 2 金属型温度为 400 ℃时 P-Cr-Ti 变质的 Al-25%Si 合金冷 却曲线
- Fig.2 Cooling curves of Al-25%Si alloy modified by P-Cr-Ti at 400 $\,\,^\circ\!\!\mathbb{C}\,$ metal mold

的拐点不能排除是 Al-25%Si-1%Cr-1.5%Ti 合金中分 别发生了 L→Al₇Cr 相变、L+TiAl₃→α_{Ti} 和 L+Al₁₁Cr₂ →α_{Cr}相变造成的。

2.2 富 Cr、Ti 相

金属型温度为 200 ℃, Al-25%Si 合金经 0.1%P-1%Cr-1.5%Ti 复合变质后的 SEM 照片及 EDS 元 素面扫描结果如图 3 所示, X 射线衍射结果如图 4 所示。

从图 3 可以确定,组织中四边形状和针状组织分 别为初生 Si 相和共晶 Si 相。组织中含 Si 与不含 Si 的 Ti 或 Cr 的化合物难以精确区分,含 Ti 化合物呈长条状、 短杆状,含 Cr 化合物呈菊花状、网状,从 EDS 元素面 扫描结果中可以看到有少量的 P 分布在含 Ti 化合物中。 结合图 4 可以得出,Al-25% Si 合金中 Cr、Ti 主要以 TiAl₃、Ti₇Al₅Si₁₂、Al₇Cr、Al₁₃Cr₄Si₄化合物的形式存在。 2.3 凝固组织

金属型预热温度分别为 600、400、200 ℃时实验 用合金的金相组织如图 5 所示。经 P-Cr-Ti 复合变质 后,凝固组织中初生 Si 减小了 12.2%~51.7%,并且初

生 Si 分布的均匀程度增加。共晶 Si 的形态几乎不变, 片状共晶 Si 变短,当金属型预热温度为 200 ℃时,这 种效果更明显。对初生 Si 周围α相几乎没有影响。

从图 5 中还可以看出, 经 P-Cr-Ti 复合变质后, 凝固组织中有富 Cr 或 Ti 相出现。当金属型预热到 600 ℃时, 富 Cr 或富 Ti 相的形态主要为长条状、短 杆状,还有一些呈菊花状、网状分布在初生 Si 之间, 如

- 图 3 P-Cr-Ti 变质的 Al-25%Si 合金 SEM 照片及 EDS 元素面 扫描
- Fig.3 SEM image (a) and corresponding EDS element mappings of Al-25%Si alloy modified by P-Cr-Ti: (b) Al, (c) Si, (d) Sr, (e) Ti, and (f) P

5b 中箭头所示。根据图 3 面扫描结果可知,长条状相为含 Ti 化合物,网状相为含 Cr 化合物。增大冷却速度时,含 Ti 化合物仍为长条状,含 Cr 化合物变成了短杆状和颗粒状,如图 5f 中圆圈 B 所示。部分初生Si 相与长条状的含 Ti 化合物紧密接触,并且两者之间无明显的界线,如图 5f 中圆圈 A 和 5g 所示,表明两

冬

者之间存在其中一相在另一相上生长的关系。

2.4 凝固组织中各相的数量

在 100 倍金相照片中测得的凝固组织中各相所占 比例如表 1 所示。可以看出,加 Cr、Ti 后,组织中初 生 Si 和共晶 Si 所占比例减少;α相的数量总体上也是 在减少,只有在金属型预热温度为 600 ℃时,α相所 占比例增加。组织中含 Cr、Ti 相所占比例随冷却速度 的提高而明显增加。

2.5 讨论

(1) TiAl₃对初生 Si 具有一定的细化能力

TiAl₃的晶格常数为 *a*=0.384 nm, *c*=0.8579 nm^[17], Si 的晶格常数为 *a*=0.542 nm。从两者的这组晶格常数 上看,晶格错配度很大,TiAl₃不可能成为 Si 相的形 核基底,但是 TiAl₃中的{110}晶面上对角线原子间距 离为 0.5431 nm,如图 6 中阴影面所示。这个晶面与 Si 的晶格错配度只有 0.2%,属于完全共格,从晶格错 配度上看,这个晶面完全能够成为 Si 的形核基底。

- 图 5 不同预热温度下 P 变质和 P-Cr-Ti 变质后 Al-25% Si 合金 的凝固组织
- Fig.5 Solidification microstructures of Al-25%Si alloy modified by P (a, c, e) and P-Cr-Ti (b, d, f) at different preheating temperatures: (a, b) 600 ℃, (c, d) 400 ℃, and (e, f) 200 ℃;

(g) the sketch map corresponding to position A in Fig.5f

	表 1	Al-25%Si	合金凝固组织中各相成	分
--	-----	----------	------------	---

Table 1 Volume fraction of the phases in the solidification structure of Al-25% Si allo	y (vol%)
---	---------	---

Mold temperature/°C	Primary Si		Eutectic Si		Rich Cr, Ti phase	r, Ti phase α-Al	
	Р	P-Cr-Ti	Р	P-Cr-Ti	P-Cr-Ti	Р	P-Cr-Ti
	modification	modification	modification	modification	modification	modification	modification
600	24.77	15.83	8.75	8.90	3.51	66.48	71.76
400	21.41	16.09	8.36	6.88	13.42	70.23	63.61
200	13.03	12.32	18.25	10.87	26.65	68.72	50.16

(2) TiAl₃对初生 Si 具持续析出的能力

Al-25%Si 合金经过 P 变质处理后, 熔体内形成的 AlP 是 Si 相的形核核心。凝固时首批初生 Si 析出后, 熔体内的 AlP 基本全部消耗殆尽,随后的冷却过程中, 初生 Si 析出数量很有限,为此才出现了图 2 中箭头 B 与箭头 F 段内温度下降速度比较快的现象。加 Ti 后熔 体内的 TiAl₃ 相在降温过程中不断生长, TiAl₃ 相的 {110}晶面就会不断地出现在与熔体的界面上,为初生 Si 的持续析出创造条件,为此才出现了图 2 中箭头 C 与箭头 G 段内温度下降速度比较慢的现象。

如前所述, Al-25%Si-1%Cr-1.5%Ti 合金凝固时, 在初生Si 析出之前,熔体中有TiAl₃相存在,如果TiAl₃ 的{110}晶面与熔体接触,当温度降低到初生Si 析出 温度以下时,初生Si 就会借助TiAl₃相析出,如图5f 中圆圈A所示,使初生Si 数增加。由于熔体中TiAl₃ 相{110}晶面为次密排面,故生长过程中暴露在熔体中 的数量有限,所以TiAl₃相细化初生Si 的能力也有限。

(3) Cr 使初生 Si 分布均匀的机理分析

在非平衡凝固的条件下,熔体内必然存在有成分 起伏现象。P-Cr-Ti 复合变质后,Al-25%Si 合金熔体 内局部区域可能会出现 Al-Cr 和 Al-Ti 合金熔体;凝固 过程中初生 Si 周围存在一个贫 Si 层,即使当 Ti、Cr 含量较低时,在这个层内的局部区域也容易出现 Al-Cr 和 Al-Ti 合金熔体,则 Al₇Cr 相可能会单独析出, L+Al₇Cr→ α_{Cr} 和 L+TiAl₃→ α_{Ti} 反应也可能单独进行。

图 6 TiAl3 晶格示意图

Fig.6 Sketch map of TiAl₃ lattice

由 Al-Cr 合金平衡相图可知, Al₇Cr 的析出温度很容易 低于 Al-25%Si 合金初生 Si 的析出温度,如图 2 中 D 箭头所示。由于 Al₇Cr 在初生 Si 之间析出,如图 5f 中圆圈 B、图 3 中 Cr 的分布所示,当初生 Si 生长过 程中与 Cr 的化合物相遇时,可有效阻止初生 Si 的聚 集,使凝固组织中初生 Si 分布变得均匀。

Al-Cr 和 Al-Ti 合金的 L+CrAl₇→ a_{Cr} 和 L+TiAl₃→ a_{Ti} 反应温度在 660~665 ℃之间,形成的 a_{Cr} 和 a_{Ti} 分布 在初生 Si 周围或初生 Si 之间,也对初生 Si 的聚集起 阻碍作用。相比之下, a_{Cr} 相的这种作用略强一些,因 为 L+TiAl₃→ a_{Ti} 反应容易借助熔体初生的 TiAl₃相进 行,在初生的 TiAl₃相周围形成 a_{Ti} 相。

(4) Cr、Ti 改变组织组成物比例机理

从图 3 的元素面扫描结果中可以看到,有少量的 P 分布在含 Ti 化合物中,说明 Ti 消耗了一部分的 P, 导致熔体中首批初生 Si 的形核数量减少,同时,初生 Si 生长时,初生 Si 之间熔体内含 Cr 化合物的析出阻 断了初生硅的生长,剩余熔体内由于没有 AIP 存在, 新的初生 Si 形核困难,所以加 Cr、Ti 后组织中初生 Si 的数量减少。

冷却速度加快时,熔体内 L+Al₇Cr→ a_{Cr} 和 L+ TiAl₃→ a_{Ti} 相变不易充分进行,使 Al₇Cr 和 TiAl₃相残 留量增加,导致组织中含 Cr、Ti 化合物数量增多,同 时使组织中的 α 相数量减少。

3 结 论

1) 对于 Al-25%Si 合金,与单一的 P 变质相比,经
P-Cr-Ti 复合变质后,凝固组织中初生 Si 的尺寸减小了
12.2%~51.7%,并且初生 Si 分布的均匀程度增加。

2) Al-25%Si 合金中Cr、Ti 主要以TiAl₃、Ti₇Al₅Si₁₂、 Al₇Cr、Al₁₃Cr₄Si₄化合物的形式存在,有少量的 P 分 布在含 Ti 化合物中。含 Ti 化合物呈长条状、短杆状; 含 Cr 化合物呈菊花状、网状,分布在初生 Si 之间。 含 Cr、Ti 化合物的数量随冷却速度的增加而增加。

3) 变质处理时 Al-6.5%Ti 合金带入的 TiAl₃相,具有 使初生 Si 持续析出和细化初生 Si 的作用,但细化能力有

限。凝固过程中初生 Si 周围形成的含 Cr 化合物和 *a*_{Cr} 阻止 初生 Si 的长大与聚集,促使初生 Si 分布的均匀程度增加。

参考文献 References

- Qian Zhao, Liu Xiangfa, Zhao Degang et al. Mater Lett[J], 2008, 62(14): 2146
- [2] Lasa L, Rodriguez-Ibabe J M. Materials Science and Engineering A[J], 2003, 363(1-2): 193
- [3] Hekmat-Ardakan A, Liu X C, Ajersch F et al. Wear[J], 2010, 269(9-10): 684
- [4] Joseph S, Tewari A, Kumar S. Metallurgical and Materials Transactions A[J], 2013, 44(5): 2358
- [5] Nafisi S, Hedjazi J, Boutorab S M et al. Annual Meeting & Exhibition of the Minerals, Metals & Materials Society[C]. USA: TMS, 2004: 851
- [6] Robles-Hernandez F C, Sokolowski J H. Advanced Engineering Materials[J], 2005, 7(11): 1037
- [7] Ludwig T H, Dæhlen E S, Schaffer P L et al. Journal of Alloys and Compounds[J], 2014, 586(6): 180
- [8] Mohanty P S, Gruzleski J E. Acta Materialia[J], 1996, 44(9): 3749
- [9] Wang Mingxing, Meng Xiangyong, Liu Zhiyong et al.

Transactions of Nonferrous Metals Society of China[J], 2006, 16(S3): 1342

- [10] Kumar G S V, Murty B S, Chakraborty M. Journal of Alloys and Compounds[J], 2009, 472(1-2): 112
- [11] Liu Guanglei, Si Naichao, Sun Shaochun et al. Transactions of Nonferrous Metals Society of China[J], 2014, 24(4): 946
- [12] Timelli G, Camicia G, Ferraro S. Journal of Materials Engineering and Performance[J], 2014, 23(2): 611
- [13] Cai Yuanhua, Liang Ruiguang, Hou Longgang et al. Materials Science and Engineering A[J], 2011, 528(12): 4248
- [14] Bhattamishra A K, Lal K. Materials & Design[J], 1997, 18(1):25
- [15] Cui Hua(崔 华), Hou Longgang(侯陇刚), Zhang Jishan(张济山). Chinese Journal of Rare Metals(稀有金属)[J], 2010, 34(2): 178
- [16] ASM International Alloy Phase Diagram and the Handbook Committees. Alloy Phase Diagrams[M]. USA: The Materials Information Company, 1992
- [17] Piątkowski J. Archives of Foundry Engineering[J], 2009, 9(4):195

Modification Mechanism of Cr and Ti in Al-25%Si Alloy Modified by P-Cr-Ti

Chen Shuying, Liu Xue, Yue Xudong, Chang Guowei (Liaoning University of Technology, Jinzhou 121001, China)

Abstract: Al-25% Si alloy was treated by compound modification of P-Cr-Ti. Then the solidification microstructure and the effects of Cr and Ti elements were investigated. The results indicate that the primary Si size decreases by $12.2\% \sim 51.7\%$ in the solidification microstructure of Al-25%Si alloy modified by the P-Cr-Ti compared with that of simple phosphorus modification, and the primary Si is more uniform. The Cr and Ti elements in the Al-25%Si alloy mainly appear as compounds including TiAl₃, Ti₇Al₅Si₁₂, Al₇Cr and Al₁₃Cr₄Si₄, and there is a small amount of P in the Ti-containing compounds. Ti-containing compounds appear as long strip shapes and short rod shapes. Cr-containing compounds, which distribute among the primary Si, appear as daisy-like shapes and net shapes. The compounds containing Cr and Ti are increased in number with the increase of the cooling rate. The TiAl₃ phases initiated by Al-6.5% Ti alloy make the primary Si precipitate continuously and refine the primary Si with a limited refining ability. Cr-containing compounds and α_{Cr} formed around the primary Si prevent the growth and gathering of the primary Si during the solidification, which leads to more uniform distribution of the primary Si.

Key words: A1-25% Si alloy; P-Cr-Ti compound modification; element effect mechanism; solidification process

Corresponding author: Chang Guowei, Ph. D., Professor, School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, P. R. China, Tel: 0086-416-4198651, E-mail: cgw@lnut.edu.cn