FeTiO₃-Fe₂O₃固溶体合成及其非等温碳热还原研究

邢相栋^{1,2}, 刘依然³, 巨建涛^{1,2}, 刘漫博^{1,2}, 陈云飞^{1,2}

(1. 西安建筑科技大学,陕西 西安 710055)(2. 陕西省冶金工程技术研究中心,陕西 西安 710055)(3. 北京科技大学,北京 100083)

摘 要:为明确 Fe₂O₃固溶对 FeTiO₃还原过程的影响机理,本实验基于粉末煅烧法合成 xFeTiO₃(1-x)Fe₂O₃固溶体(0 ≤x≤1),研究了非等温碳热还原条件下固溶体的还原行为,并采用 X 射线衍射仪(XRD)和扫描电镜-能谱仪(SEM-EDS) 对合成固溶体及还原产物进行表征。结果表明,实验合成固溶体质地均匀,纯度较高,且 x 越大,FeTiO₃ 晶格畸变程 度越大。固溶体开始还原温度和还原速率(还原度 α 的增大速率)均随着 x 值的增加而增加。固溶 Fe₂O₃能够促进 FeTiO₃ 还原,且在还原过程中存在过渡相 Fe₂TiO₄和 Fe₃Ti₃O₁₀。固溶体-石墨交界面首先形成浮士体(FeO)、钛铁尖晶石(Fe₂TiO₄) 和 TiO₂,进一步还原生成金属 Fe 和 Ti₂O₃。由非等温碳热还原过程动力学计算分析,得出表观活化能为 295.54 kJ/mol。 关键词: 钛铁氧化物固溶体:物相转变;非等温还原

中图法分类号: TB332 文献标识码: A 文章编号: 1002-185X(2018)09-2775-07

以含钛矿石为原料制取富钛料,进而获取金属钛 是钛冶炼的主要工艺,含钛矿石在自然界分布广泛, 并且具有钛、铁等有价元素共生的特点^[1-3]。目前,多 采用生产效率高、操作简便的火法冶金方法实现提取 利用。由于钛铁矿中钛、铁多以钛铁固溶体的形态赋 存于矿石中,还原难度较大,为实现铁、钛的高效利 用需要提供更高的温度和更长的时间。然而,传统以 含钛矿石为原料的还原机理研究无法排除杂质元素对 钛铁固溶体演变的影响,难以准确获得钛铁固溶体还 原的热力学及相关动力学信息^[1-6]。因此,为改善富钛 料的生产工艺,降低含钛矿石的还原难度,更好的理 解并掌握含钛矿石的还原过程,研究钛铁固溶体的碳 热还原行为具有重要的意义。

Ramdohr 等^[4]对赤铁矿-钛铁矿固溶体的矿物学进 行了研究,得出当温度高于 1050℃时可以合成全成分 范围的 xFeTiO₃(1−x)Fe₂O₃固溶体。S. Akimoto 等^[6,7] 的研究结果证实,样品在 1100 ℃烧结后淬火可以得 到全成分范围的 xFeTiO₃(1−x)Fe₂O₃ 固溶体。而 Pouillard^[5]在实验室 950 ℃煅烧 2 h 条件下,系统研究 了 xFeTiO₃(1−x)Fe₂O₃ 固溶体的合成行为,得出固溶 体能够在 2 种成分范围内合成 (0.66<x<1 和 0<x< 0.33)。同时,基于前人研究,Nicholls^[8]提出了赤铁矿 和钛铁矿的二元相图。 关于赤铁矿和钛铁矿的碳热还原研究,已有大量 学者发表相关研究成果^[9-11],然而 *x*FeTiO₃(1-*x*)Fe₂O₃ 固溶体的碳热还原过程鲜有报道。本实验基于粉末煅 烧法合成全成分范围的 *x*FeTiO₃(1-*x*)Fe₂O₃ 固溶体, 对该固溶体体系进行非等温碳热还原研究,分析其碳 热还原行为及机理,为工业优化含钛矿石高温冶炼条 件提供理论支持。

1 实 验

为研究 FeTiO₃-Fe₂O₃固溶体的碳热还原行为,借鉴 D. B. Rao 和 M. Riguad^[12]采用的粉末煅烧法合成研究对象,实验设备如图 1 所示。

图 1 实验设备示意图

Fig.1 Schematic of the experimental apparatus

基金项目:国家自然科学基金(51604209)

收稿日期: 2017-09-17

作者简介: 邢相栋, 男, 1983 年生, 博士, 副教授, 西安建筑科技大学冶金工程学院, 陕西 西安 710055, E-mail: 610504108@qq.com

利用分析纯试剂 Fe₂O₃、还原铁粉 (Fe)和 TiO₂, 以摩尔比为 1:1:3 混合合成 FeTiO₃。在乙醇中将 Fe₂O₃、 还原铁粉 (Fe)和 TiO₂粉末充分混合均匀,在 100 MPa 下混合物压成圆柱体。干燥后,以高纯氩气 (Ar)为 保护气,在竖式炉中将圆柱体混合物从 800 ℃煅烧至 1100 ℃,升温速率为 5 ℃·min⁻¹。在 1100 ℃下保温 10 h 后,迅速将煅烧样品取出,高纯氩气冷却。制样 后,采用 X 射线衍射 (XRD)、扫描电镜-能谱分析 (SEM-EDS)对合成样品进行物相分析和微观形貌观 察,并留以后续固溶体合成。在合成 FeTiO₃的基础上, 将化学分析纯的 Fe₂O₃粉末与合成 FeTiO₃粉末按表 1 成分进行充分混合、压制成块。将压块在前述条件下 从室温加热到 1200 ℃,保温 4 h,然后快速冷却。采 用 XRD 和 SEM-EDS 分析合成 xFeTiO₃(1-x)Fe₂O₃ 固 溶体的物相成分和微观形貌。

采用热重分析对 *x*FeTiO₃(1−*x*)Fe₂O₃ 固溶体体系 非等温碳热还原行为进行研究,将固溶体-石墨压块放 入刚玉坩埚中,使用铁铬铝合金丝将刚玉坩埚置于高 温竖式炉恒温区,与天平悬挂,对还原过程失重情况 进行实时记录。实验所用热重分析系统经无水草酸钙 标定,精度符合要求。实验全程高纯氩气(Ar,4 L·min⁻¹)保护。选取4种升温制度考察 FeTiO₃-Fe₂O₃ 固溶体的碳热还原行为,分别是 5,10,15 和 20 ℃·min⁻¹。

某一时刻(t)还原度(
$$\alpha$$
)定义如式(1):

$$\alpha = \frac{\Delta m_t}{\Delta m} \times 100\%$$
(1)

式中: Δm_t 为 t 时刻的失重量, g; Δm_{max} 为压块中最大失重量, g。

2 结果与讨论

2.1 合成产物表征

2.1.1 FeTiO3合成

采用 XRD 和 SEM-EDS 对 FeTiO₃ 合成样品进行 表征,结果如图 2 和图 3 所示。

表	1 3	<u></u> よ验	样	品	成	分

Table 1 Experimental samples xFeTiO₃(1-x)Fe₂O₃ and

	conditi	ons	
No.	x	Fe:Ti (molar ratio)	Solid solution:C (molar ratio)
1	0	-	1:3.0
2	0.25	7:1	1:2.5
3	0.5	3:1	1:2.0
4	0.75	5:3	1:1.5
5	1	1:1	1:1.0

图 2 FeTiO₃合成样品 XRD 图谱 Fig.2 XRD patterns of synthetic FeTiO₃

图 2 为 FeTiO₃ 合成样品的 XRD 与标准 PDF 卡片的对比图。从图 2 可以看出,FeTiO₃ 合成样品纯度较高,物相均为菱方晶系的 FeTiO₃,空间结构为 R3,说明合成效果良好。图 3 为 FeTiO₃ 合成样品的微观形 貌及能谱分析,从均一的图像颜色可以看出合成样品 质地均匀,符合实验要求。

2.1.2 FeTiO3-Fe2O3 固溶体合成

图 4 为 $xFeTiO_3(1-x)Fe_2O_3$ 固溶体合成样品的 XRD 图谱。使用晶体结构 Rietveld 法精修 XRD 数据得 出不同 x 值的固溶体晶格参数,如表 2 所示。图 5 为 $xFeTiO_3(1-x)Fe_2O_3$ 固溶体合成样品的 SEM-EDS 分析。

从 XRD 图可以看出固溶体主要为菱方晶系的钛 铁矿-赤铁矿物相。分析表 2 可知,当 x 值从 0 增加至 1.0, xFeTiO₃(1-x)Fe₂O₃ 固溶体晶格参数从 0.50540

图 4 xFeTiO₃(1-x)Fe₂O₃固溶体合成样品 XRD 分析 Fig.4 XRD patterns of xFeTiO₃(1-x)Fe₂O₃ solid solutions

表 2 xFeTiO₃·(1-x)Fe₂O₃固溶体合成样品晶格参数

 Table 2
 Parameters of synthetic xFeTiO₃·(1-x)Fe₂O₃ solid solutions calculated from XRD

x	a/nm	±	c/nm	±	Volume/nm ³
0	0.50742	0.00003	-	-	0.1306
0.25	0.50540	0.00006	1.37339	0.0008	0.3038
0.5	0.50724	0.00004	1.38472	0.0003	0.3085
0.75	0.50742	0.00007	1.40018	0.0005	0.3122
1	0.51359	0.00005	1.42139	0.0004	0.3247

图 5 xFeTiO₃·(1-x)Fe₂O₃(x=0.5)固溶体合成样品 SEM-EDS 分析

和 0.137339 nm 逐渐增大至 0.51359 nm 和 0.142139 nm,相应的晶胞体积从 0.3038 nm³ 增大至 0.3247 nm³。 这主要是因为晶格中尺寸较大的 Ti⁴⁺ (*r* 为 0.053 nm) 替代 Fe²⁺ (*r* 为 0.049 nm)^[13]。因而,当 *x* 越大,晶 格变形越大。分析图 5 可知, *x*=0.5 时, *x*FeTiO₃(1*x*) Fe₂O₃ 固溶体合成效果良好。

2.2 非等温碳热还原曲线

使用热重分析 (TGA) 设备对不同 x 值的 $xFeTiO_3$ (1-x)Fe₂O₃ 固溶体-石墨进行非等温碳热还原实验研 究。实验温度范围为 0 至 1300 \mathbb{C} ,升温速率为 20 \mathbb{C} /min。实验结果如图 6 所示。

图 6 为升温速率为 20 ℃/min 的非等温碳热还原 xFeTiO₃(1-x)Fe₂O₃ 固溶体的还原度曲线。随着 x 的增 大,反应开始温度逐渐增加,分别为 832.7,833.2, 907.4,923.1 和 950.0 ℃。与其他固溶体相比,Fe₂O₃ (x=0)的还原速率最快,且分步反应过程清楚,FeTiO₃ (x=1)的还原速率最慢,这表明,固溶 Fe₂O₃能够促 进 FeTiO₃还原。除 FeTiO₃ (x=1)外,各固溶体碳热 还原曲线趋势相似,达到某一温度时,还原度 *a* 迅速 增加。还原度 *a* 增加速度随 *x* 值的增加而减小,这意 味着钛铁氧化物固溶体的化学稳定性随 *x* 的增大而 增加。

2.3 还原产物物相结构及微观形貌

非等温碳热还原产物的 XRD 分析如图 7 所示。 表 3 为非等温碳热还原产物物相组成。

表 4~表 7 分别为 xFeTiO₃(1-x)Fe₂O₃(x=0.5) 固 溶体还原产物主要含钛物相晶格参数值。

950 ℃时在 XRD 图谱中能够发现 Fe₃Ti₃O₁₀ (Fe₂TiO₅·FeTi₂O₅ 固溶体)的特征峰,进一步提高温

- 图 6 *x*FeTiO₃(1−*x*)Fe₂O₃固溶体 20 °C/min 非等温碳热 还原曲线
- Fig.6 Non-isothermal $(0\sim1300 \text{ °C})$ carbothermic reduction curves of xFeTiO₃(1-x)Fe₂O₃ solid solutions ($x=0\sim1$) at the heating rate of 20 °C/min

- 图 7 xFeTiO₃(1-x)Fe₂O₃(x=0.5)固溶体非等温碳热还原产物 XRD 分析
- Fig.7 XRD patterns of xFeTiO₃(1 x)Fe₂O₃ (x=0.5) solid solution reduction products

度,其在产物中的含量迅速降低,这表明,与Fe₂TiO₄ 相比,Fe₃Ti₃O₁₀更易生成,如式(2)所示。

3FeTiO₃·Fe₂O₃+8C=Fe₂TiO₅·FeTi₂O₅+6Fe+8CO(2) 从表 4 可知, 菱方晶系的 *x*FeTiO₃(1-*x*)Fe₂O₃ 固 溶体向斜方晶系的 Fe₃Ti₃O₁₀转变过程中,晶格主要沿

b 轴增长,而沿 a 轴和 c 轴有缩小的趋势,晶胞体积 变大。温度升高,晶格沿 a 轴和 c 轴变化较小,而沿 b 轴长大趋势较高,晶胞体积明显变大,这意味着温 度能够影响原子间的紧密度,改善离子的扩散效果, 从而有利于提高还原反应速率。

图 7 表明, 在较低温度(950~1050 ℃) 产物中存 在 Fe₂TiO₄, 且在还原温度 1000 ℃时, 达到最高值 42.2%。根据 Fe₂TiO₄和 Fe₃Ti₃O₁₀含量对比分析可知,

表 3 非等温碳热	还原固溶体	(x=0.5)	产物物相组成
-----------	-------	---------	--------

Table 3Composition parameters of reduced xFeTiO₃(1-x) Fe₂O₃ (x=0.5) solid solution calculated from XRD (ω /%)

Phases	950 ℃	1000 °C	1050 °C	1100 °C	1150 °C	1200 °C	1300 °C
FeTiO ₃ -Fe ₂ O ₃	75.8	44.1	37.8	21.6	-	-	-
Fe ₂ TiO ₄	11.1	42.2	14.1	-	-	-	-
Fe ₃ Ti ₃ O ₁₀	13.1	0.3	-	-	-	-	-
Fe	-	10.4	29.2	60.1	80.8	85.1	90.1
TiO_2	-	3.0	16.8	14.8	13.2	6.3	0.6
Ti ₂ O ₃	-	-	2.1	3.5	6.0	8.6	5.1
TiC	-	-	-	-	-	-	3.8

表 4 Fe₃Ti₃O₁₀的晶格参数

Table 4 Lattice parameters of Fe₃Ti₃O₁₀ calculated from XRD

Temperature/°C	<i>a</i> /nm	±	<i>b</i> /nm	±	<i>c</i> /nm	±	Volume/nm ³
950	0.373650	0.00004	0.967986	0.00003	0.996779	0.00005	0.36052
1000	0.373751	0.00002	0.968767	0.00001	0.997090	0.00002	0.36102

表 5 Fe₂TiO₄的晶格参数

```
Table 5Lattice parameters of Fe2TiO4 calculated from XRD
```

Temperature/°C	a/nm	±	Volume/nm ³
950	0.839768	0.00005	0.59221
1000	0.841403	0.00001	0.59568
1050	0.844219	0.00003	0.60168

 Fe_2TiO_4 主要通过两种途径生成,分别通过 $xFeTiO_3(1 - x)Fe_2O_3$ 固溶体和 $Fe_3Ti_3O_{10}$ 还原产生,反应方程如式(3)和式(4)所示。

FeTiO₃ · 0.5Fe₂O₃ +0.5C=Fe₂TiO₄ +Fe+0.5CO (3)
2(Fe₂TiO₅ · FeTi₂O₅)+2C=3Fe₂TiO₄+3TiO₂+2CO (4)
表 5 分析结果表明,与 xFeTiO₃(1-x)Fe₂O₃ 固溶
体和 Fe₃Ti₃O₁₀相比,产物中生成立方晶系 Fe₂TiO₄后,
晶胞体积明显变大,且晶格沿 *a* 轴长大的幅度较高,
体积变化幅度较大。还原温度从 950 ℃升温至 1050

℃后,晶格参数从 0.839768 nm 和 0.59221 nm³逐渐增 加至 0.844219 nm 和 0.60168 nm³。这意味着温度对改 善 Fe₂TiO₄还原具有更明显的效果。

从 1000 ℃开始, TiO₂ 一直维持较低的峰强, 至 1300 ℃时含量仅为 0.6%, 而此时, 碳热还原产物中 能够检测到碳化钛 (TiC)存在, 物相组成为金属 Fe、 TiO₂和 TiC。产物中 TiO₂含量在 1050 ℃达到最高值, 为 16.8%, 此后逐渐降低。从表 6 可知, TiO₂ 晶胞体 积较小, 仅为 62%左右, 且随着温度升高, 晶格沿 *a* 轴和 *c* 轴长大, 晶胞体积大幅度增加。在研究温度范 围内, 晶格参数分别由 0.458945 和 0.295663 nm 增大 至 0.459431 和 0.296649 nm, 晶胞体积从 0.06229 nm³ 增至 0.06262 nm³。

还原温度达到 1050 ℃后,产物中能够检测到 Ti₂O₃。Ti₂O₃与 TiO₂ 晶格结构相同,均为菱方晶系, 但其晶格参数较大。表 7 结果表明,Ti₂O₃ 晶格沿 a 轴 和 c 轴增长速度随温度升高逐渐增大,晶胞体积在 1300 ℃达到 0.32291 nm³。晶格参数较大有利于产物 进一步参与反应,当温度 1300 ℃时,部分 Ti₂O₃ 与 C 反应生成 TiC,反应如式(5)所示。

$$Ti_{2}O_{3}+5C=2TiC+3CO$$
 (5)

非等温碳热还原 *x*FeTiO₃(1-*x*)Fe₂O₃ 固溶体的还 原产物微观形貌如图 8 所示。

在 1000 ℃时,颗粒内主体物相为均质的、表面光 滑的 *x*FeTiO₃(1-*x*)Fe₂O₃ 固溶体。在颗粒边缘和裂缝处 的还原过程较快,还原颗粒的反应前沿并不均匀且这种 特点一直持续到还原结束。随着还原反应的推进,在颗 粒外边缘优先出现金属 Fe 颗粒,并逐渐从颗粒外表面 向内生长。还原反应遵循未反应核模型,从固溶体-石墨 交界面开始首先形成浮士体(FeO)、钛铁尖晶石 (Fe₂TiO₄)和TiO₂,进一步还原生成金属 Fe 和Ti₂O₃。

2.4 非等温动力学

1300

为揭示非等温碳热还原 xFeTiO₃(1-x)Fe₂O₃ 固溶

0.514125

体动力学机理,并分析反应动力学过程。设置 4 种升 温速率,分别为 5,10,15 和 20 ℃/min,进行非等温 碳热 *x*FeTiO₃(1-*x*)Fe₂O₃ (*x*=0.5)固溶体实验,还原 曲线如图 9 所示。

从图 9 中可以看出,当温度超过 1050 ℃后还原 反应速率均迅速增加。在实验温度范围内,非等温碳 热还原反应结束于 1300 ℃。而且可以看出当温度增 加时反应速率均加快。

固溶体非等温碳热还原速率 dα/dt 与反应速率 常数 κ (T)和机理函数 f(α)具有线性关系,其动力学 方程为:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \kappa(T)f(\alpha) \tag{6}$$

式中: α 为碳热还原过程的还原度,%; T为还原度等于 α 时所对应的温度, K; t为还原度等于 α 时所对应的温度, K; t为还原度等于 α 时所对应的还原时间, s。

0.00002

0.32291

	表 6 TiO ₂ 的晶格参数
Table 6	Lattice parameters of TiO ₂ calculated from XRD

		1	-		
Temperature/°C	a/nm	±	c/nm	±	Volume/nm ³
1000	0.458945	0.00004	0.295663	0.00003	0.06229
1050	0.458976	0.00005	0.295775	0.00007	0.06231
1100	0.458992	0.00001	0.295900	0.00005	0.06234
1150	0.459010	0.00002	0.296181	0.00003	0.06240
1200	0.459300	0.00007	0.296239	0.00003	0.06249
1300	0.459431	0.00002	0.296649	0.00002	0.06262

表 7 Ti₂O₃的晶格参数

_		Table / L	attice parameters o	f T ₁₂ O ₃ calculated fro	m XRD	
_	Temperature/°C	a/nm	±	c/nm	±	Volume/nm ³
	1050	0.508510	0.00005	1.381914	0.00007	0.30945
	1100	0.508940	0.00001	1.383609	0.00005	0.31036
	1150	0.510785	0.00002	1.387065	0.00003	0.31339
	1200	0.511089	0.00007	1.408251	0.00003	0.31856

0.00002

1.410685

图 8 xFeTiO₃(1-x)Fe₂O₃固溶体碳热还原产物微观形貌(x=0.5)

Fig.8 SEM images of reduced product for xFeTiO₃(1-x)Fe₂O₃ (x=0.5) at 1000 °C (a), 1100 °C (b), 1200 °C (c), and 1300 °C (d)

- 图 9 非等温碳热还原 *x*FeTiO₃(1-*x*)Fe₂O₃(*x*=0.5)固溶体还原 曲线
- Fig.9 Non-isothermal carbothermic reduction curves of xFeTiO₃(1-x)Fe₂O₃ (x=0.5) solid solution at different heating rates

к(T)通常采用 Arrhenius 定律表述:

$$\kappa = A \exp\left(-\frac{E}{RT}\right) \tag{7}$$

式中: *A* 为指前因子; *E* 为活化能, kJ/mol; *R* 为普适 气体常数, 其值为 8.314 J/(mol·s)。

f(α) 描述为:

$$f(\alpha) = (1 - \alpha)^n \tag{8}$$

式中: n为反应级数。

将式(7)和式(8)代入方程(6)中,得到方程 (9):

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = A \exp\left(-\frac{E}{RT}\right) \left(1-\alpha\right)^n \tag{9}$$

升温速率 β 为:

$$\beta = \frac{\mathrm{d}T}{\mathrm{d}t} \tag{10}$$

$$\frac{\mathrm{d}\alpha}{\left(1-\alpha\right)^n} = \frac{A}{\beta} \exp\left(-\frac{E}{RT}\right) \mathrm{d}T \tag{11}$$

对式(11)进行积分,并记为 g(α):

$$g(\alpha) = \int_0^{\alpha} \frac{\mathrm{d}\alpha}{\left(1-\alpha\right)^n} = \frac{A}{\beta} \int_{T_0}^{T} \exp\left(-\frac{E}{RT}\right) \mathrm{d}T \qquad (12)$$

$$T = T_0 + \beta t \tag{13}$$

采用费等模型 Flynn-Wall-Ozawa (FWO) 计算非 等温碳热还原固溶体动力学参数活化能,如式(14) 所示。

$$\ln\left(\frac{\beta}{T^2}\right) = \ln\left[\frac{AR}{Eg(\alpha)}\right] - \frac{E}{RT}$$
(14)

该方程可以根据 β/T^2 和 T 的线性关系,计算不同 还原度时的活化能 E_{\circ}

图 10 为还原度 *α*=0.1~0.8 时 ln*β* 与 1/*T* 之间的线 性关系。计算的动力学参数如表 8 所示。

从图 10 中可以看出,不同升温速率下相同还原度 对应的 1/T 之间具有较好的线性关系, R² 范围为 0.98193~0.99702,说明该模型拟合可靠。平均活化能 为 295.54 kJ/mol。

图 10 $\ln\beta \pi T^1$ 线性关系

Fig.10 Linear relation between $\ln\beta$ and T^1

表 8 FWO 模型分析不同还原度时对应的活化能

 Table 8
 Activation energy E obtained from TG data at

 different beating mater by EWO methods

unterent n	unterent heating rates by F wO methods					
α/%	$E/kJ \cdot mol^{-1}$	R^2				
10	337.73	0.99702				
20	338.25	0.99018				
30	276.82	0.98947				
40	272.42	0.99358				
50	270.25	0.99210				
60	270.27	0.98193				
70	281.93	0.98547				
80	316.61	0.98416				
Average	295.54	-				

3 结 论

)

 1) xFeTiO₃(1-x)Fe₂O₃ 固溶体体系合成产物具有 均质、高纯度的特点,合成效果良好。固溶体晶胞参 数随着 x 的增加而增加, x 越高,晶胞变形越大。

2)随着 x 的增加,固溶体非等温碳热还原开始温度逐渐增加。除了 FeTiO₃ (x=0),在某一还原温度后,各样品还原度均随着温度的增加而显著上升,而上升速度随 x 的增加而减小。

3)FWO 非等温动力学模型适用于研究 xFeTiO₃(1-x)Fe₂O₃固溶体体系非等温碳热还原,计算得出活化能值为 295.54 kJ/mol。

参考文献 References

- [1] Jung S M. ISIJ International[J], 2014, 54(4): 781
- [2] Zhang K, Lv X, Huang R et al. Metallurgical and Materials Transactions B[J], 2014, 45(3): 923
- [3] Rezan S A, Zhang G, Ostrovski O. ISIJ International[J], 2012, 52(3): 363
- [4] Posnjak E, Barth T. Zeitschrift für Kristallographie-Crystalline Materials[J], 1934, 88(1): 27
- [5] Pouillard E. Amer Chim[J], 1950, 5: 164
- [6] Nagata T, Akimoto S. Geofisica Pura e Applicata[J], 1956, 34(1): 36

- [7] Ishikawa Y, Akimoto S. Journal of the Physical Society of Japan[J], 1957, 12(10): 1083
- [8] Nicholls G D. Advances in Physics[J], 1955, 4(14): 113
- [9] Jung S M. ISIJ International[J], 2014, 54(4): 781
- [10] Gou H P, Zhang G H, Chou K C. Metallurgical and Materials Transactions B[J], 2015, 46(1): 48
- [11] Wang Y, Yuan Z, Matsuura H et al. ISIJ International[J], 2009, 49(2): 164
- [12] Rao D B, Rigaud M. Oxidation of Metals[J], 1975, 9(1): 99
- [13] Wang Z Y, Zhang J L, Xing X D et al. JOM[J], 2016, 68(2): 656

Synthesis and Non-isothermal Carbothermic Reduction of FeTiO₃-Fe₂O₃ Solid Solution Systems

Xing Xiangdong^{1,2}, Liu Yiran³, Ju Jiantao^{1,2}, Liu Manbo^{1,2}, Chen Yunfei^{1,2}

(1. Xi'an University of Architecture & Technology, Xi'an 710055, China)

(2. Research Center of Metallurgical Engineering and Technology of Shaanxi, Xi'an 710055, China)

(3. University of Science and Technology Beijing, Beijing 100083, China)

Abstract: To explore the carbothermic reduction behaviors of the xFeTiO₃·(1-x)Fe₂O₃ solid solutions with various x values, the solid solutions were artificially synthesized and then subjected to non-isothermal carbothermic reduction. The results show that the solid solutions are of uniform texture and high purity. Meanwhile, lattice distortion degree of FeTiO₃ are increased with increasing the value of x, and the initial reduction temperature and reduction rate which is the increasing rate of reduction degree α are also improved. The reduction of FeTiO₃ could be improved by Fe₂O₃ dissolving, and the Fe₂TiO₄ as well as Fe₃Ti₃O₁₀ exist as the transition phase in the reduction process. FeO, Fe₂TiO₄ and TiO₂ are firstly generated in the interface of solid-graphite, and then reduced to Fe and Ti₂O₃. It is concluded that the apparent activation energy is 295.54 kJ/mol from the calculation and analysis of the non-isothermal kinetics for the carbon thermal reduction process.

Key words: titanium-iron solid solution; phase transformation; non-isothermal reduction

Corresponding author: Xing Xiangdong, Ph. D., Associate Professor, College of Metallurgical Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, P. R. China, E-mail: 610504108@qq.com