# 金属过渡层增强金刚石薄膜场发射性能的机理研究

张 宇<sup>1</sup>,杨武霖<sup>1,2</sup>,符立才<sup>1</sup>,朱家俊<sup>1</sup>,李德意<sup>1</sup>,周灵平<sup>1,2</sup>

(1. 湖南大学,湖南 长沙 410082)(2. 湖南省喷射沉积技术重点实验室,湖南 长沙 410082)

**摘 要**: 以金属钛和钨为过渡层,采用 HFCVD 法在硅基上制备金刚石薄膜,并对薄膜的场发射特性进行分析研究。结 果表明,金属过渡层对金刚石薄膜场发射性能有显著的增强作用。以金属钨为过渡层时,金刚石薄膜的场发射开启场 强为 5.4 V/μm,比无过渡层降低了 44%;场发射电流密度在电场强度为 8.9 V/μm 时可达到 1.48 mA/cm<sup>2</sup>。通过对薄膜 结构表征可知,场发射性能增强主要与界面处电子运输势垒的降低及薄膜中 sp<sup>2</sup>C 含量的增加有关,在界面处及金刚石 膜内形成良好的导电通道,使电子更容易运输至薄膜表面,从而表现出优异的场发射性能。

关键词:金属过渡层;金刚石薄膜;导电通道;场发射性能

中图法分类号: TB43 文献标识码: A 文章编号: 1002-185X(2018)11-3433-06

金刚石薄膜是一种具有良好物理化学特性的多功 能材料,已经广泛应用于光电、机械、半导体等领 域<sup>[1,2]</sup>。其较高的硬度和热导率、低热膨胀系数及高化 学稳定性等<sup>[3]</sup>优点,尤其是较低的功函数和负电子亲 和势特性<sup>[4]</sup>,使金刚石薄膜成为应用于真空微电子和 场致发射显示领域更有前景的冷阴极发射材料<sup>[5]</sup>。

金刚石薄膜作为场发射阴极材料是国际学术界的 研究热点,目前国内外学者研究较多的是通过对薄膜 表面改性和内部掺杂增强电子发射能力<sup>[6-12]</sup>。在金刚 石薄膜表面改性上,Li等<sup>[6]</sup>和 Show等<sup>[7]</sup>通过改变工艺 使其表面结构发生变化,生成的石墨相为电子发射提 供了导电通道,从而增强电子场发射性能。Zhao等<sup>[8]</sup> 和 Yeh等<sup>[9]</sup>通过对薄膜表面后处理使金刚石表面表现 出负的电子亲和势(NEA)特性,从而改善了电子场 发射特性。在对金刚石薄膜内部掺杂的研究上,Okano 等<sup>[11]</sup>和 Shen等<sup>[12]</sup>通过对金刚石膜掺杂使其微观结构 发生变化,获得较低的阈值电压和开启场强,表现出 优异的场发射性能。

金刚石薄膜作为场发射阴极材料,其电子发射过 程主要有:(1)电子从基底注入薄膜;(2)电子在薄膜 中沿着导电通道传输;(3)电子从薄膜表面跃迁至真 空中<sup>[13]</sup>。研究结果表明<sup>[6,8,11]</sup>,影响电子在薄膜中的输 运及发射的主要因素有金刚石薄膜的表面形貌、微观 结构、薄膜内部缺陷和晶粒大小等,而目前针对金刚 石薄膜与基底的界面特性对场发射性能影响研究还非 常少,应得到足够的重视。作为电子运输通道,其界 面为薄膜材料中电子的补给和运输起到了关键作用。 为此,本研究采用金属过渡层改变膜基界面特性和金 刚石膜微观结构的方法,深入研究了金属过渡层增强 金刚石薄膜阴极材料电子场发射性能机理。

## 1 实 验

选用单晶 Si (100)为基底材料,用丙酮和去离 子水分别超声清洗 Si 基体 20 min,烘干后采用直流磁 控溅射方法制备金属薄膜/硅(Metal/Si)复合基底材 料。工艺参数如下:本底真空度 5.0×10<sup>-4</sup> Pa,靶材选 用金属 Ti、W(纯度均为 99.95%),靶基距 50 mm, 工作气体纯度为 99.99%的氩气,溅射气压 1.0 Pa,溅 射功率 100 W,溅射时间 90 s。

将已制备的 Metal/Si 和 Si 基底用粒度为 0.5 μm 的金刚石粉和丙酮溶液混合而成的悬浊液超声 30 min,使基底材料表面有较多的形核点。用去离子水超 声清洗样品 10 min,去除基材表面附着的金刚石颗粒, 将清洗好的样品烘干,用射频等离子体清洗基底材料 15 min,射频功率 200 W, 氩气流量 30 ml/min,气压 8 Pa。本实验采用热丝 CVD 法制备金刚石薄膜,灯丝 结构为直径 0.4 mm 和长度 100 mm 的两组直灯丝,灯 丝之间的间隙为 10 mm,样品均放置于灯丝正下方。 通过自改造加工的拉伸装置解决了直灯丝的受热变形 问题,以保证灯丝与不同位置样品间的距离一致,使

收稿日期: 2017-11-15

基金项目:国家自然科学基金(51675169)

作者简介: 张 宇, 男, 1990 年生, 硕士, 湖南大学材料科学与工程学院, 湖南 长沙 410082, 电话: 0731-88822663, E-mail: zhyu1185@163.com

衬底温度分布均匀<sup>[14]</sup>。沉积金刚石薄膜的具体工艺参数如表1所示。

金刚石薄膜的表面形貌用场发射电子显微镜 (FESEM, Hitachi S-4800)表征,用激光拉曼光谱仪 (Raman, Labram-010, λ=632.8 nm)对金刚石薄膜检 测和鉴定,其组织结构用 SIEMENS D5000型X射线 衍射仪(Cu Kα, λ=0.154 nm)分析,采用霍尔效应测试 仪(Hall, HMS-300/0.55T)测试薄膜样品的电学特性, X射线光电子能谱分析(XPS, Escalab 250Xi)表征 薄膜表面碳元素的化学状态。金刚石薄膜的场发射性 能测试是在高真空(5.0×10<sup>-6</sup> Pa)环境下进行,用 Keithely 248 数字电源表记录场发射相关参数。其中, 场发射性能测试的样品尺寸均为4 mm×4 mm,阴阳 极间距 300 μm。

## 2 结果与分析

### 2.1 金刚石薄膜的场发射性能测试

MCD/Metal/Si 复合结构薄膜和 MCD/Si 薄膜样品 的场致发射特性 J-E 曲线图如图 1 所示。定义场发射电 流密度达到 10 μA/cm<sup>2</sup>时的电场强度为开启场强,通常 用开启场强来评判场发射材料性能的好坏。由图 1 可以 看出, MCD/Si 薄膜的场发射开启场强为 9.6 V/μm,在 电场强度为 10.9 V/μm 时,电流密度仅达到 45 μA/cm<sup>2</sup>; MCD/Ti/Si 的开启场强为 7.8 V/μm,在电场强度为 10.9 V/μm 时,电流密度达到 160 μA/cm<sup>2</sup>; MCD/W/Si 的开 启场强为 5.4 V/μm,在电场强度为 8.9 V/μm 时,最大 电流密度可达到 1.48 mA/cm<sup>2</sup>。由此可见,金属 Ti 和 W 过渡层对金刚石薄膜的电子场发射特性有明显的增强 作用,主要表现为开启场强降低,场发射电流密度增大。 即 MCD/Metal/Si 复合结构薄膜的电子场致发射特性均 优于 MCD/Si 薄膜样品,其中 MCD/W/Si 复合结构薄膜 表现出最优异的场发射性能。

#### 2.2 金属过渡层增强金刚石薄膜场发射性能机制分析

由场发射性能测试结果可知,金属过渡层明显改善了金刚石薄膜的电子场发射特性。为明确金属过渡 层增强金刚石薄膜场发射性能的作用机制,本研究从 金刚石薄膜表面形貌、物相组成、微观结构、电性能 等方面进行研究与讨论。

硅基表面直接沉积金刚石薄膜(MCD/Si)和硅基 表面沉积金属薄层后生长金刚石薄膜(MCD/Metal/Si) 的表面形貌如图 2 所示。由图 2a、2b 和 2c 可知,在 相同的制备工艺条件下,在 Si、Ti/Si 和 W/Si 基底上 均生长出连续的微米金刚石薄膜,晶粒分布均匀,棱 角分明,晶粒大小约为 1 μm。图 2d 为金刚石薄膜样

表 1 沉积金刚石薄膜的工艺参数 Table 1 Process parameters of diamond film deposition

|                      | Reactant gas                     |                                   | Reaction        | Substrate    | Filament     | Distance                            |                      |
|----------------------|----------------------------------|-----------------------------------|-----------------|--------------|--------------|-------------------------------------|----------------------|
| Base<br>pressure/Pa  | Methane/<br>mL·min <sup>-1</sup> | Hydrogen/<br>mL·min <sup>-1</sup> | pressure/<br>Pa | temperature/ | temperature/ | of filament<br>and substrate/<br>mm | Deposition<br>time/h |
| 3.0×10 <sup>-3</sup> | 25                               | 150                               | $4 \times 10^3$ | 850          | 2200         | 5                                   | 3                    |





Fig.1 Electron field emission properties *J-E* curves of diamond films

品的局部放大图,大多数晶粒呈现尖锥形。由图可知, 过渡层金属对金刚石薄膜表面形貌的影响甚微。可以 推断这3类复合薄膜样品的场发射增强因子应该基本 相同<sup>[15]</sup>。

物相组成方面,MCD/Si和MCD/Metal/Si复合结 构薄膜的XRD 图谱如图 3 所示。所有样品的金刚石 膜晶粒发育良好,衍射峰尖锐,位于 43.9°、75.3°和 91.5°处的特征衍射峰分别对应于金刚石的(111)、 (220)和(311)晶面。MCD/Si、MCD/Ti/Si、MCD/W/Si 薄膜样品的金刚石(111)衍射峰均强于(220)和(311) 衍射峰,说明金属过渡层对金刚石膜晶粒生长取向没 有影响。然而,在MCD/W/Si复合结构薄膜的X射线 衍射图谱中,除了金刚石的特征峰外,还出现钨及其 碳化物的衍射峰。Nakanishi等<sup>[16]</sup>报道了金属与金刚石 薄膜界面处形成的金属碳化物对金刚石薄膜的电学特 性有明显的改善作用。这种以化学键合的方式形成高



图 2 不同基底沉积的金刚石薄膜表面形貌

Fig.2 Surface morphologies of diamond film of different substrates deposition: (a) Si, (b) Ti/Si, (c) W/Si, and (d) a magnified view of MCD





度稳定的钨的碳化物,使得膜基界面处由原本较高的 肖脱基势垒降低,转变为欧姆接触<sup>[17]</sup>。对于作为场发 射材料用金刚石薄膜复合阴极电极来说,膜基接触势 垒的降低意味着电子穿越金刚石膜基界面需克服的能 量势垒越小,即在较低的电压下便可使电子在硅基底 材与金刚石薄膜间转移,打通了电子转移的界面通道。

为了考查是否因为金刚石薄膜的结构方面的区别 而引起的场发射性能变化,对样品进行了拉曼光谱及 X射线光电子能谱分析。MCD/Metal/Si和 MCD/Si 薄 膜样品的拉曼光谱如图 4 所示。从拉曼图谱中可以看 到有  $V_1$  (1120 cm<sup>-1</sup>)、D\* (1309 cm<sup>-1</sup>)、D (1332 cm<sup>-1</sup>)、 V<sub>3</sub> (1466cm<sup>-1</sup>) 和 G (1545 cm<sup>-1</sup>) 特征峰。其中 V<sub>1</sub> 和  $V_{3}$ 峰是由于金刚石薄膜中 CH<sub>x</sub>键的变化引起的<sup>[18]</sup>,但 D\*峰与金刚石膜中碳原子杂化的关系目前没有明确 的说法,很难用于定量分析。不同的薄膜样品位于 1332 cm<sup>-1</sup> 处均具有金刚石的一阶特征峰,位于 1545 cm<sup>-1</sup>处的G峰对应于金刚石薄膜中石墨相成分,是sp<sup>2</sup> 碳的键价结构引起的<sup>[19]</sup>。曲线 II、III 的 G 峰有明显凸 起,对应金刚石膜中 sp<sup>2</sup>碳含量增加,这也使得 1332 cm<sup>-1</sup> 处的金刚石特征峰宽化<sup>[20]</sup>。该结果表明,金属过 渡层的引入使金刚石薄膜中 sp<sup>2</sup>碳-碳键含量发生变 化。Sankaran 等<sup>[21]</sup>研究表明金刚石薄膜中 sp<sup>2</sup>碳-碳键 为电子运输提供了导电通道,有利于金刚石薄膜材料 场发射性能的提升。

XPS 谱峰的峰位可以给出原子点阵中原子的化学 状态信息,被用于进一步分析金刚石膜中 sp<sup>2</sup>碳-碳键 与 sp<sup>3</sup>碳-碳键的含量对场发射性能的影响,结果如图 5 所示。在 XPS 全谱图中没有检测到金属 W、Ti 的特 征峰,只出现了 C1s 的特征峰,对 MCD/Si 和 MCD/Metal/Si 复合结构薄膜样品的 XPS 表征高分辨



图 4 MCD/Metal/Si 和 MCD/Si 薄膜的 Raman 图谱 Fig.4 Raman spectra of MCD/Metal/Si and MCD/Si films

结果进行半定量分析,用 XPSPEAK41 软件对 MCD/Metal/Si 复合结构薄膜和 MCD/Si 薄膜的 XPS C 1s 谱进行高斯-洛伦兹拟合,经分峰拟合得到结合 能为 284.6 和 285.1 eV 的 2 个特征峰<sup>[22]</sup>,分别对应 于薄膜样品中的 sp<sup>2</sup> C 和 sp<sup>3</sup> C。用 2 个特征峰的面 积比值可得出薄膜样品中 sp<sup>2</sup> C 和 sp<sup>3</sup> C 的比例。其 中,MCD/W/Si 薄膜样品的 sp<sup>2</sup>/sp<sup>3</sup>值最大,为 1.940; 其次是 MCD/Ti/Si,为 1.651;没有金属过渡层的金 刚石薄膜样品中 sp<sup>2</sup>/sp<sup>3</sup>值最小,为 1.482。该结果表 明,金属过渡层的引入使金刚石薄膜中 sp<sup>2</sup> C 含量升 高,形成更多电子传输通道,表现出优异的场发射 性能。



图 5 MCD/Metal/Si 和 MCD/Si 薄膜样品的 XPS 图谱 Fig.5 XPS spectra of MCD/Metal/Si and MCD/Si film samples: (a) MCD/Si, (b) MCD/Ti/Si, and (c) MCD/W/Si

除此之外样品的电性能测试也证明了上述推论。 采用霍尔效应测试仪对样品电性能测试,结果如表 2 所示。金属过渡层使金刚石薄膜的电学特性发生了明 显的变化: MCD/Metal/Si 复合结构薄膜的电导率和载 流子浓度均优于 MCD/Si 薄膜样品;不同金属(Ti、 W)过渡层对金刚石薄膜的电学特性影响不同。其中, 金属钨过渡层复合结构薄膜(MCD/W/Si)的电导率 和载流子浓度高于 MCD/Ti/Si 和 MCD/Si,表现出最 优的电学性能。

金刚石薄膜的结构与电学性能之所以出现上述变 化,与金属过渡层的引入有直接联系。金属过渡层的引 入促进金刚石的形核过程,有助于纳米金刚石形核过渡 层的形成<sup>[23]</sup>, Cheng 等<sup>[24]</sup>制备金刚石薄膜时在基材表 面引入超纳米金刚石形核过渡层,在界面和晶界处产生 了大量的纳米石墨相;同时由于金属及其碳化物的微扩 散,使界面处和金刚石晶粒间的石墨相含量增加<sup>[21]</sup>。 因此,金属过渡层使金刚石薄膜中 sp<sup>2</sup>C含量增加,从 而使电导率得到显著提升。同时还注意到,选用金属钨 为过渡层时金刚石薄膜导电性能的增强效果更明显,认 为这与过渡层种类对金刚石形核层的促进效果密切相 关,在所选用的2种过渡金属中,钨元素相比于钛元素 对金刚石形核层有更加显著的促进效果<sup>[25]</sup>。

| <br>Table 2 Electrical characteristic parameters of MCD/Metal/Si and MCD/Si film samples |                   |                                                   |                                                                         |                                        |  |  |  |  |  |
|------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|
|                                                                                          | Hall measurements |                                                   |                                                                         |                                        |  |  |  |  |  |
| <br>MCD films                                                                            | Resistivity/Ω·cm  | Electrical conductivity/ $(\Omega \cdot cm)^{-1}$ | Carrier mobility/ $\times 10^2$<br>cm <sup>2</sup> ·(V·s) <sup>-1</sup> | Carrier concentration/cm <sup>-3</sup> |  |  |  |  |  |
| MCD/Si                                                                                   | 19.62             | 0.05097                                           | 3.389                                                                   | $4.624 \times 10^{15}$                 |  |  |  |  |  |
| MCD/Ti/Si                                                                                | 3.337             | 0.2997                                            | 7.977                                                                   | 2.435×10 <sup>16</sup>                 |  |  |  |  |  |
| <br>MCD/W/Si                                                                             | 0.3271            | 3.057                                             | 9.552                                                                   | $1.998 \times 10^{17}$                 |  |  |  |  |  |

表 2 MCD/Metal/Si 和 MCD/Si 薄膜样品的电学特性参数

综上所述,3种不同衬底上沉积的金刚石薄膜基 本相同,场发射性能增强与金属过渡层密切相关,主 要归结于两方面原因:一方面是金属过渡层的引入疏 通了电子迁移的界面通道。原始无金属过渡层的膜基 界面形成肖特基接触具有较宽的势垒<sup>[21]</sup>,电子自主隧 穿宽势垒的几率低,需要加较高的电压使电子穿过界 面进入金刚石薄膜中。当引入金属过渡层后 MCD/Metal/Si 复合界面结构有效改变了膜基界面特 性,形成欧姆接触,电子穿过界面进入金刚石薄膜的 几率大幅提升,电子从基底穿过界面进入金刚石膜内 的能量消耗降低,使电子更容易从基底运输至薄膜中, 在较低的电场作用下持续发射电子,即表现出较低的 开启场强;另一方面,金属过渡层的引入提升金刚石 薄膜自身的导电性能。相比于纯 Si 表面, 在引入金属 过渡层后基材表面的金刚石形核过程得到促进, 生长 初期更倾向形成较小的纳米颗粒,在金刚石晶界间存 在较多 sp<sup>2</sup>碳-碳键,在薄膜内部形成通畅的电子迁移 通道,有助于电子从其表面发射出去,使更多的电子 能够持续地从金刚石薄膜表面逸出, 表现出较大的场 发射电流密度。基于上述两方面的原因,选用金属钨 过渡层有更显著的效果,因此 MCD/W/Si 界面结构的 金刚石薄膜材料具备良好的场发射性能。

## 3 结 论

1) 采用 HFCVD 法在 Si、Ti/Si 和 W/Si 基底表面 制备出均匀连续的微米金刚石薄膜,金属 W 和 Ti 过 渡层均可改善其电学性能和场发射性能。

2) 金属 W 过渡层增强金刚石薄膜场发射性能效 果最佳,主要表现为开启场强低和场发射电流密度大, 开启场强为 5.4 V/μm,当电场强度为 8.9 V/μm 时最大 电流密度可达到 1.48 mA/cm<sup>2</sup>。

3)金属过渡层对金刚石薄膜的表面形貌没有明显的影响,其增强场发射性能的主要机制是金属过渡层的引入使界面特性发生改变,电子隧穿势垒降低,疏通了电子迁移的界面通道,使电子更容易从基底运输至薄膜中;金刚石薄膜内 sp<sup>2</sup>C 含量增加,为电子运输提供更多的导电通道,有易于获得更高的场发射电流,从而表现出优异的场发射特性。

#### 参考文献 References

- Tzeng Y, Yoshikawa M, Murakawa M et al. Materials & Design[J], 1992, 13(1): 60
- [2] Liao Xiaoming(廖晓明), Ran Junguo (冉均国), Gou Li(苟立) et al. Rare Metal Materials And Engineering(稀有金属材料 与工程)[J], 2005, 34(2): 755

- [3] Field J E. *The Properties of Diamond*[M]. London: Academic Press, 1979
- [4] Vander W J, Nemanich R J. Applied Physics Letters[J], 1993, 62(16): 1878
- [5] Zhu W, Kochanski G P, Jin S. MRS Proceedings[C]. Cambridge: Cambridge University Press, 1995
- [6] Li S, Ma L, Long H et al. Applied Surface Science[J], 2016, 367: 473
- [7] Show Y, Matsuoka F, Hayashi M et al. Journal of Applied Physics[J], 1998, 84(11): 6351
- [8] Zhao Y, Zhang B, Yao N et al. Diamond & Related Materials[J], 2007, 16(3): 650
- [9] Yeh C J, Chang H T, Leou K C et al. Diamond and Related Materials[J], 2016, 63: 197
- [10] Shen Y, Zhang Y, Zhang C et al. Journal of Alloys & Compounds[J], 2017, 709: 8
- [11] Okano K, Koizumi S, Silva S R P et al. Nature[J], 1996, 381(6578): 140
- [12] Shen Y, Qiao Y, He Z et al. Materials Letters[J], 2015, 139:322
- [13] Lei Qingsong(雷青松). Vacuum & Cryogenics(真空与低温)[J], 2003, 9(2): 76
- [14] Zhang T, Zhang J, Shen B *et al. Journal of Crystal Growth*[J], 2012, 343(1): 55
- [15] Fowler R H, Nordheim L. Mathematical, Physical and Engineering Sciences[J], 1928, 119(781): 173
- [16] Nakanishi J, Otsuki A, Oku T et al. Journal of Applied Physics[J], 1994, 76(4): 2293
- [17] Yokoba M, Koide Y, Otsuki A et al. Journal of Applied Physics[J], 1997, 81(10): 6815
- [18] Mortet V, Zhang L, Eckert M et al. Physica Status Solidi (a)[J], 2012, 209(9): 1675
- [19] Corrigan T D, Gruen D M, Krauss A R et al. Diamond and Related Materials[J], 2002, 11(1): 43
- [20] Ferrari A, Robertson J. Translated by Tan Pingheng(谭平恒). Raman Spectroscopy in Carbons: from Nanotubes to Diamond(碳材料的拉曼光谱:从纳米管到金刚石)[M]. Beijing: Chemical Industry Press, 2007: 144
- [21] Sankaran K J, Panda K, Sundaravel B et al. ACS Applied Materials & Interfaces[J], 2012, 4(8): 4169
- [22] Stavis C, Clare T L, Butler J E et al. Proceedings of the National Academy of Sciences[J], 2011, 108(3): 983
- [23] Liu Xuezhang(刘学璋), Wei Qiuping(魏秋平), Zhai Hao(翟豪) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2013, 23(3): 667

[24] Cheng H F, Chiang H Y, Horng C C et al. Journal of Applied Physics[J], 2011, 109(3): 033 711 Technology A: Vacuum, Surfaces, and Films[J], 1994, 12(4): 1513

[25] Perry S S, Somorjai G A. Journal of Vacuum Science &

## Improvement Mechanism of Field Emission Properties of Diamond Films by Metal Transition Layers

Zhang Yu<sup>1</sup>, Yang Wulin<sup>1,2</sup>, Fu Licai<sup>1</sup>, Zhu Jiajun<sup>1</sup>, Li Deyi<sup>1</sup>, Zhou Lingping<sup>1,2</sup>

(1. Hunan University, Changsha 410082, China)

(2. Key Laboratory of Spray Deposition Technology of Hunan Province, Changsha 410082, China)

**Abstract:** Micro-crystalline diamond films on a silicon substrate were prepared by a HFCVD method with a titanium or tungsten transition layer, and the field emission characteristics of the films were studied. The results show that the metal transition layers can significantly enhance the field emission properties of the diamond films. When the tungsten layer is used as the transition layer, the opening field intensity of the film is 5.4 V/ $\mu$ m, which is reduced by 44% compared with that of non-transition layer films. Furthermore, the field emission current density can reach 1.48 mA/cm<sup>2</sup> at the electric field strength of 8.9 V/ $\mu$ m. The structure characterization of the films shows that the enhancement of the field emission properties is mainly attributed to the decrease in the electron transport barrier at the interface and the increase in the sp<sup>2</sup> C content in the film. Good conductive channels are formed at the interface and in the diamond film, causing easier electron transport. Hence, the diamond film with a metal transition layer exhibits enhanced field emission properties. **Key words:** metal transition layers; diamond films; conductive channels; electron field emission properties

Corresponding author: Yang Wulin, Ph. D., Research Assistant, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China, Tel: 0086-731-88822663, E-mail: hnuywl@hnu.edu.cn