Ti/Ni 多层复合材料界面扩散行为研究

张志娟¹,张 兵^{1,2},尚筱迪¹,王秋雨¹,王 乐¹,王快社^{1,2}

(1. 西安建筑科技大学, 陕西 西安 710055)

(2. 功能材料加工国家地方联合工程研究中心, 陕西 西安 710055)

摘 要:针对累积叠轧5道次制备的Ti/Ni多层结构复合材料试样进行热处理,采用光学显微镜和扫描电镜分析方法, 对复合材料的显微组织、界面结构和扩散反应层厚度等进行观察分析,结合动力学理论研究了Ti/Ni界面的扩散行为。 结果表明:试样经过累积叠轧5道次轧制后,Ti/Ni界面未发生扩散;在(550~750℃)/(0.5~8 h)热处理后,Ti/Ni界面发 生扩散,扩散层厚度与保温时间呈幂函数关系,与加热温度呈指数关系;随着热处理温度的升高,Ti-Ni扩散层的生长 方式由650℃以下的体扩散控制逐渐转变为晶界扩散控制。通过计算和验证得到采用累积叠轧5道次制备的Ti/Ni多层

复合材料的 Ti/Ni 界面固相反应层生长动力学方程为: $y = 1.7043 \times 10^4 \exp\left(-\frac{78202}{pT}\right) t^{1.2009-0.0008T}$ 。

关键词: Ti/Ni 多层复合材料; 热处理; 界面扩散行为; 动力学理论
中图法分类号: TB331
文献标识码: A
文章编号: 1002-185X(2019)03-0923-08

近年来,多层结构复合材料因结合了各组元层金 属的优点,具有优良的物理、化学性能以及优异的综合 力学性能,被广泛应用于航空航天、电子技术、汽车、 机械等工业领域,从而受到国内外学者的广泛关注^[1,2]。

Ti/Ni 多层复合材料是磁性和非磁性材料的组合, 具有优异的冷热中子对比度,在X射线场和中子光学 中适用作极化中子^[3-5]。因此,Ti/Ni 多层复合材料是 制备超镜、偏振器、单色仪等光学元件的理想材料^[6]。 同时,在一定热处理条件下,Ti/Ni 界面扩散生成的 TiNi 相具有形状记忆效应,可制备形状记忆效应的功 能复合材料。目前,关于 Ti/Ni 层状复合材料的研究 主要集中在爆炸^[7]、离子注入^[6]、磁控溅射^[8]、扩散结 合^[9]、冷轧^[10,11]等不同制备技术方面,对累积叠轧 (Accumulative Roll Bonding, ARB)技术制备的 Ti-Ni 多 层复合材料的研究尚无人涉及。

累积叠轧是一种用于制备高致密度、优异力学性 能的块体超细晶板材的剧烈塑性变形技术^[12]。近年 来,众多学者采用 ARB 技术成功制备出 Al/Ti^[13]、 Al/Mg^[14,15]、Al/Ni^[16,17]、Al/Zn^[18]、Al/Cu^[19]、Cu/Mo^[20]、 Cu/Ag^[21]、Cu/Ti^[22]、Cu/Zn^[23]、Cu/Ni^[24]等多层结构复 合材料,并对其组织结构和性能进行了研究。结果表 明,ARB 技术能够明显细化材料组织,使复合材料界 面结合强度和抗拉强度显著提高。但热处理可促进界 面间金属间化合物的生成,对复合材料的界面结合状况和力学性能有较大影响^[25]。因此,研究界面元素的 扩散行为及其相组成和生长规律,对优化和提高复合 材料的物理、化学和综合力学性能有着重要意义。现 今,关于热处理对 Ti/Ni 复合材料扩散的研究,主要 集中在界面结构、扩散反应及其相组成等方面,而结 合动力学理论对 Ti/Ni 多层结构复合材料的界面扩散 行为研究甚少,尤其是对 ARB 制备的 Ti/Ni 多层结构 复合材料。

本研究针对累积叠轧 5 道次后的 Ti/Ni 多层结构 复合材料试样进行热处理,研究温度和时间对界面层 结构和扩散反应层生长厚度的影响,利用动力学理论 对 Ti、Ni 界面层的扩散行为进行分析和研究,结合 Arrhenius 公式建立扩散反应层生长厚度与保温温度 和保温时间的函数关系。

1 实 验

研究热处理对轧制态 Ti/Ni 多层结构复合材料 Ti-Ni 界面层的影响,由于完全退火态的纯钛(TA1) 和纯镍(N6)板材的屈服强度比为 230.2 MPa:239.3 MPa \approx 1:1^[26],故本实验选用厚度均为 0.7 mm 的 Ti、 Ni 薄板,原材料尺寸均为 0.7 mm (*T*)×75 mm (*W*)×100 mm (*L*),其化学成分见表 1。

收稿日期: 2018-03-15

作者简介: 张志娟, 女, 1992 年生, 硕士, 西安建筑科技大学, 陕西 西安 710055, E-mail: 18209234172@163.com

基金项目:国家自然科学基金 (51541404);镍钴资源综合利用国家重点实验室开放课题 (301170504);西安建筑科技大学基础研究基金 项目 (JC1507)

表1 纯钛(TA1)和纯镍(N6)板的化学成分

Table 1Chemical composition of pure titanium TA1 and pure nickel N6 board (ω /%)

ΤΑ1	Fe	Si	С	Ν	Н	0	Ti
IAI	0.15	0.1	0.05	0.03	0.015	0.15	Bal.
NG	Cu	Fe	Mn	С	Si	S	Ni+Co
INO	≤0.06	≤0.1	≤ 0.05	≤0.1	≤0.1	≤ 0.005	≥99.5

采用 Φ170 mm×300 mm 的二辊轧机对 Ti/Ni/Ti 复 合板进行 5 道次累积叠轧,累积叠轧工艺的原理图如 图 1 所示。具体实验步骤如下:(1) 表面处理,用不锈 钢丝刷打磨接触表面并用丙酮清洗,以除去表面氧化 层 和 油污;(2) 叠 合 并固定,将处理后的板材以 Ti/Ni/Ti 的方式堆垛,在一端打孔并用铆钉固定;(3) 预热,将固定好的复合板放入已升温到 500 ℃的马弗 炉里保温 3~5 min;(4) 轧制,以 50%压下量进行轧制 复合;(5) 将轧制后的复合板材切成两块,重复(1)~(5) 的步骤,至 5 道次叠轧为止。

对累积叠轧 5 道次后的 Ti/Ni 多层复合材料试样 在管式炉中进行不同工艺的热处理,加热温度: 550、 600、650、700、750 ℃,保温时间: 0.5、1、2、4、8 h,采用空冷的冷却方式。

采用Olympus-PMG3型光学显微镜和JSM-6460F 扫描电镜结合波谱仪(EPMA)对不同热处理后试样的 组织、界面结构及扩散层厚度进行观察分析。 图 2 是 Ti/Ni 复合材料经不同温度保温 2 h 热处理 后的界面结构。从图 2a 中可看出 550 ℃/2 h 退火后, 界面出现厚度约 2 µm 分布不均匀的扩散层。当加热温 度升高到 600 ℃(图 2b)时,界面扩散层厚度略有增 加,均匀程度提高,但仍不能区分扩散层中各亚层的边 界。当温度提高至 650 ℃时,可以清晰的看到界面扩散 层由 3 个亚层组成(如图 2c),且总层厚比图 2a 和图 2b 明显增加。在 700 ℃热处理后,扩散层的厚度比 550 ℃厚度增加显著(图 2d)。因此,在相同保温时

2 结果与讨论

2.1 界面结构

图 2 在不同温度下保温 2 h 热处理后 Ti/Ni 界面结构

Fig.2 Microstructures of Ti/Ni interface at different temperatures for 2 h: (a) 550 °C, (b) 600 °C, (c) 650 °C, and (d) 700 °C

间下,随着热处理温度的升高,Ti、Ni 各原子的活性 和迁移速率增加,界面原子热运动增强,扩散现象加剧, 使界面扩散层由一层逐渐转变为三层。

图 3 是 ARB 5 道次所得 Ti/Ni 多层复合材料未热 处理和在 700 ℃经不同时间热处理后的界面结构。图 3a 为 ARB 5 道次后 Ti/Ni 复合材料的界面结构。从图 中可以看到 Ti/Ni 界面无明显扩散。图 3b 经 700 ℃/0.5 h 热处理后, Ti/Ni 界面局部出现岛状的扩散突起,但 大部分界面仍保持平直无明显扩散。当保温时间延长 到 1 h 后 (图 3c),界面两侧均出现由扩散突起连接形 成的完整扩散薄层。图 3d 中明显可见较厚扩散层。比 较图 3c~3f 可以看到,随着时间的延长,扩散层的厚 度和数量均有所增加。这是因为在 700 ℃条件下,随 着保温时间延长,Ti、Ni 扩散原子获得能量超越势垒 几率增大,达到激活态的原子数量增多,界面原子相 互扩散的浓度增加,同时由于 ARB 剧烈塑性变形带来 的众多晶体缺陷,加速了界面原子扩散,并发生扩散 反应,形成金属间化合物所致。

2.2 微观组织

图 4 为 ARB 5 道次和不同温度保温 2 h 热处理后 Ti/Ni 复合材料的微观组织。图 4a 为 ARB 5 道次后 Ti/Ni 复合材料轧制态的显微组织。从图中可以看到各组元层 组织沿轧制方向呈扁平细长的流线组织。这是因为材料 经 ARB 剧烈塑性变形时,在轧制压力和摩擦力的双重 作用下,各组元层金属沿轧制变形方向延伸压扁,并存 在一定角度的剪切变形带(图 4a 中白色线条所标),促 使 Ni 层组织在变形带处发生颈缩。从图 4b~4d 可以观 察到经不同温度保温 2 h 热处理后 Ti、Ni 各层组织均 变为细小的等轴晶粒。利用划线法多次测量多个晶粒 求平均值的方法,测得经 550 ℃热处理后(图 4b), Ti、Ni 各平均晶粒尺寸分别约为 22 和 19 µm,当加热 温度升高到 600 ℃(图 4c)时,Ti、Ni 晶粒逐渐长大, 尺寸分别约为 28 和 23 µm。经 650 ℃热处理后(图 4d), Ti、Ni 平均晶粒分别约为 31 和 24 µm。

2.3 界面成分变化

图 5 为 ARB 5 道次轧制态试样和在 700 ℃保温不 同时间热处理后 Ti/Ni 界面的 EDS 成分分布。表 2 为 图 5 中各点的 EDS 成分分析。图 5a 中 Ti 元素和 Ni 元 素的成分曲线均在界面处垂直陡变,表明5道次累积叠 轧过程中 Ti/Ni 界面处未发生扩散。图 5b 中根据界面 层颜色的差异,可以判定经 0.5 h 热处理后界面生成了 3个扩散亚层。根据各点成分的测定数据结合 Ti-Ni 二 元相图以及相关文献研究[27,28],可以判定这3个亚层分 别是以 TiNi₃、Ti₂Ni 和 Ti 相为主。图 5b 中以 TiNi₃相 为主的扩散层对应成分曲线上的一小平台,表明该扩散 层存在稳定的 TiNi₃相。当扩散时间大于 0.5 h 时(图 5c~5f),扩散层变为明显的4层,因为随着时间的延长, TiNi₃和 Ti₂Ni 反应生成的 TiNi 相^[29,30]含量逐渐增加, TiNi 层从原先的极薄层逐渐增厚到肉眼可见的明显亚 层。由能谱仪所测各点的成分结合 Ti-Ni 二元相图, 按 照 Ti 含量由小到大的顺序可推断 4 个亚层依次主要是 TiNi₃、TiNi、Ti₂Ni 和 Ni 扩散到 Ti 中形成的固溶体。

图 3 ARB 5 道次和 700 ℃不同时间热处理试样 Ti/Ni 界面结构

Fig.3 Microstructures of Ti/Ni interface after 5 ARB pass and heat treatment at 700 °C for different time: (a) 0 h, (b) 0.5 h, (c) 1 h, (d) 2 h, (e) 4 h, and (f) 8 h

图 4 ARB 5 道次和不同温度热处理 2 h 后试样 Ti/Ni 显微组织

Fig.4 Microstructures of Ti/Ni interface after the 5 ARB pass and heat treatment at different temperatures for 2 h: (a) RM, (b) 550 °C, (c) 600 °C, and (d) 650 °C

图 5 ARB 5 道次和 700 ℃退火不同时间试样界面结构及 EDS 成分分布

Fig.5 Interface microstructures and EDS composition distributions of specimens after the 5 ARB pass and annealing at 700 °C for different time: (a) 0 h, (b) 0.5 h, (c)1 h, (d) 2 h, (e) 4 h, and (f) 8 h

Table 2 El MA results of the marked points 1/10 in Fig.5 (at /0)											
t/h		Element contents and corresponding phases of marked points									
1/11	Elements	1	2	3	4	5	6	7	8	9	10
0.5	Ti	2. 02	1.93	5.99	33.36	37.76	60.44	68.62	97.52	99.11	99.22
	Ni	97.98	98.07	94.01	66.64	62.24	39.56	31.38	2.48	0.89	0.78
	Phases	Ni	Ni	Ni	TiNi3, TiNi	TiNi3, TiNi	Ti ₂ Ni, TiNi	Ti ₂ Ni	Ti	Ti	Ti
	Ti	1.94	2.60	7.84	35.81	36.97	43.04	60.31	60.42	64.78	84.63
1	Ni	98.06	97.4	92.16	64.19	63.03	56.96	39.69	39.58	35.22	15.37
1	Phases	Ni	Ni	Ni	TiNi₃, TiNi	TiNi3, TiNi	TiNi, TiNi₃	Ti2Ni, TiNi	Ti ₂ Ni	Ti ₂ Ni	Ti ₂ Ni, Ti
	Ti	2.44	4.24	32.49	33.01	40.97	63.70	63.58	65.22	79.71	99.91
n	Ni	97.56	95.76	67.51	66.99	59.03	36.30	36.42	34.78	20.29	0.09
2	Phases	Ni	Ni, TiNi ₃	TiNi3, TiNi	TiNi3, TiNi	TiNi, TiNi ₃	Ti ₂ Ni, TiNi	Ti ₂ Ni, TiNi	Ti ₂ Ni	Ti ₂ Ni, Ti	Ti
	Ti	2.24	8.04	33.04	34.85	34.81	59.94	61.89	68.48	90.59	99.57
4	Ni	97.76	91.96	66.96	65.15	65.19	40.06	38.11	31.52	9.41	0.43
7	Phases	Ni	Ni, TiNi₃	TiNi3, TiNi	TiNi3, TiNi	TiNi3, TiNi	TiNi, Ti ₂ Ni	Ti ₂ Ni, TiNi	Ti ₂ Ni	Ti, Ti ₂ Ni	Ti
8	Ti	8.24	33.33	34.57	33.96	60.88	60.58	64.37	75.18	93.45	99.80
	Ni	91.76	66.67	65.43	66.04	39.12	39.42	35.63	24.82	6.55	0.20
	Phases	Ni, TiNi3	TiNi3, TiNi	TiNi3, TiNi	TiNi3, TiNi	TiNi, Ti2Ni	Ti₂Ni, TiNi	Ti₂Ni, TiNi	Ti ₂ Ni, Ti	Ti ₂ Ni, Ti	Ti

表 2 图 5 中对应各标准点的 EPMA 成分分析及化合相预测

 Table 2
 EPMA results of the marked points 1~10 in Fig.5 (at%)

2.4 扩散层生长动力学分析

2.4.1 热处理温度、保温时间对 Ti/Ni 扩散层厚度的影响 对在不同热处理条件下的 Ti/Ni 界面扩散层厚度 值(y)进行了显微测量,分别测量 3 个不同区域的值 取平均值(y),具体测量数值见表 3。

从表 3 的测量数据中可以看出,在 550 ℃/30 min 热处理后,扩散层平均厚度为 1.1 µm,随着保温时间 的增加,扩散层厚度缓慢增加,经保温 8 h 后,扩散 厚度为 4.9 µm,增加了 3.8 µm。随着温度的升高,在 750 ℃/30 min 热处理后,扩散层厚度为 5.83 µm,保 温 8 h 后扩散层厚度达到 16.93 µm,增加 11.1 µm。根 据扩散定律可知,热处理时间控制着界面原子迁移的 距离,而温度影响着原子热运动的激活能,改变着扩 散通量,因而会改变复合界面的相组成、组织结构及 成分。

根据显微测量所得的扩散层厚度值,分别画出相同热处理温度下扩散层厚度与保温时间的关系曲线、相同时间下扩散层厚度与温度的关系曲线,如图 6、图 7 所示。

从图 6 保温时间与 Ti-Ni 扩散层厚度的关系曲线 可以看出,在相同的热处理温度下,Ti/Ni 扩散层的厚 度与保温时间基本成幂函数关系。扩散层的厚度随着保 温时间的增加而增大,但增加速率逐渐降低。这是因为 在界面反应的最初阶段(小于 2 h 的保温过程中)扩散 层的生长主要是由 Ti、Ni 原子的化学反应控制。因此, 生长速度较快;当保温时间大于 4 h 时,随着扩散的发 生,Ti/Ni 界面反应所产生的扩散层不断致密并增厚, Ti、Ni 基体的接触被阻断,界面反应程度逐渐减弱, 扩散层的生长方式转为由扩散速率较低相的扩散决定。 相比于前期反应控制的阶段,该阶段的生长速率低。因 此,界面扩散层的增长速率逐渐降低。

图 7 中在相同的保温时间下, Ti/Ni 扩散层的厚度 随热处理温度的升高增长迅速,满足 Arrhenius^[31]关 系,即指数关系。因为扩散层的生长受原子扩散过程控

表 3 Ti-Ni 界面扩散层厚度与热处理温度、保温时间数据表

 Table 3 Data of interface diffusion layer thickness and heat temperature, holding time

<i>T/°</i> C	<i>t</i> /h	Experi	mental th	Calculated thickness/µm		
1, 0		<i>y</i> 1	<i>Y</i> 2	Уз	\overline{y}	y
550	0.5	1.11	1.25	0.97	1.11	1.17
	1	1.38	1.52	1.66	1.52	1.71
	2	2.22	1.66	2.5	2.13	2.49
	4	3.88	4.16	4.44	4.16	3.62
	8	4.99	4.72	4.99	4.9	5.28
	0.5	2.41	2.08	1.87	2.12	1.97
	1	3.88	4.16	3.88	3.98	2.79
600	2	4.72	5.27	4.99	4.99	3.95
	4	6.21	6.38	6.45	6.38	5.60
	8	8.05	7.77	7.77	7.86	7.94
	0.5	2.85	3.91	2.73	2.82	3.08
	1	6.31	5.76	6.31	6.13	4.25
650	2	7.99	8.27	7.99	8.08	5.85
	4	10.44	10.27	10.10	10.27	8.07
	8	13.04	12.76	13.32	13.04	11.11
	0.5	4.35	4.14	4.14	4.21	4.54
	1	7.12	7.19	6.84	7.05	6.09
700	2	9.59	9.59	9.17	9.45	8.16
	4	12.17	12.78	12.22	12.5	10.94
	8	15.06	14.74	14.74	14.88	14.66
	0.5	5.83	5.55	6.11	5.83	6.36
	1	8.05	8.33	8.33	8.24	8.29
750	2	9.99	10.27	10.27	10.18	10.81
	4	13.18	13.46	13.74	13.46	14.09
	8	16.65	16.93	17.21	16.93	18.36

图 6 Ti-Ni 扩散层厚度与保温时间的关系

Fig.6 Thickness (y) vs holding time (t) curves of Ti-Ni diffusion layer

图 7 Ti-Ni 扩散层厚度与温度的关系

制,而原子的扩散系数与温度之间存在指数关系。因此, 扩散层的生长速度与温度之间成指数关系,厚度与温度 自然也表现为指数关系。显然,热处理温度对扩散层厚 度的影响要远远大于保温时间对扩散层厚度的影响,从 图 6、图 7 层厚的变化中也证明了这一观点。

2.4.2 Ti/Ni扩散层生长动力学模型

从 Ti/Ni 扩散层厚度与时间的关系曲线可以看出, 该化合物组成的扩散层作为 Ti/Ni 复合材料中的扩散反 应层应遵循退火温度下反应层厚度 (*y*)、扩散时间符合 幂函数关系,即满足:

$$y = K \left(\frac{t}{t_0}\right)^n \tag{1}$$

$$\ln y = \ln K + n \ln \left(\frac{t}{t_0}\right)$$
⁽²⁾

式中, y 为扩散层厚度(μ m); t 为保温时间(min); t_0 为 与 t 计量单位一致的单位时间,用来构成幂函数的无

量纲的自变量(min); *n*为扩散层生长指数; *K*为特定温 度下扩散层生长常数(μm)。

将表 2 中不同热处理工艺对应的扩散反应层厚度 y 代入式(2)中,先计算出 lny 的值,然后算出 lnt 的值。 将 lny、lnt 代入式(2)中,进行线性拟合,拟合出 lny 与 lnt 的关系图,如图 8 所示。图 8 线性回归分析拟合出 的直线的相关系数 R2 均大于为 0.9,表明在该温度条件 下的 K 是有效的。根据拟合直线代入式(2)中,计算出 不同温度对应的动力学指数 n、反应速率常数见表 4。

从表 4 中可以看出,从 550~750 ℃, Ti/Ni 扩散层的 生长系数 K、生长指数 n 都不是一个恒定的常数,而是 随着温度的升高生长系数 K 不断增大,除 650 ℃外,生 长指数 n 整体呈现减小的趋势。根据文献[32],生长指 数 n 小于 0.5 而大于 0.25,说明体扩散、晶界扩散同时 控制着扩散层的生长,当 n 小于 0.25 时,扩散层的生长 主要受晶界扩散控制,且伴随着晶粒尺寸的长大。由表 4 可得到 Ti-Ni 扩散层的生长,在 650 ℃以下由体扩散控 制,后期随温度的升高逐渐向晶界扩散控制转变。这是 因为随着温度的升高晶粒尺寸逐渐增大,有效晶界面积 减小,晶界扩散降低,表现为随温度升高,生长指数 n 减小。相关文献研究也表明了这一变化规律^[32-34]。

图 8 Ti/Ni 扩散层厚度与扩散时间的双对数曲线关系

Fig.8 Double logarithm curves of the thickness and time of Ti/Ni diffusion layer

表 4 不同热处理温度下 TiNi 扩散层生长系数 K、生长指数 n

Table 4 Growth coefficient K and the growth index n ofdiffusion layer at different heat treatmenttemperatures

Temperature <i>T</i> /°C	Growth coefficient, <i>K</i> /µm	Growth index, <i>n</i>
550	0.1502	0.57
600	0.5214	0.46
650	0.5668	0.52
700	1.0833	0.44
750	1.6616	0.38

• 929 •

根据体系中反应速率常数、温度之间的经验公式 (Arrhenius 公式):

$$K = K_0 \exp\left(-\frac{Q}{RT}\right)$$
(3)

对 Arrhenius 公式两边取自然对数变形可得:

$$\ln K = \ln \left(K_0 \right) - \frac{Q}{RT} \tag{4}$$

式中, *K* 为特定温度下扩散层生长常数(μ m); *K*₀ 为指 前因子(μ m); *Q* 为扩散活化能(J·mol⁻¹); *T* 为绝对温度 (K); *R* 为摩尔气体常数 8.314 J·(mol·K)⁻¹。

从上式可以看出:由于 Q、R、 K_0 都为常数,所以 lnK为 T^{-1} 的一阶线性方程。因此,以 lnK为变量, T^{-1} 为自变量,画出 lnK与 T^{-1} 的关系曲线,如图 9 所示。 根据 lnK与 T^{-1} 的关系曲线的斜率,可求出 Ti/Ni 扩散 层生长活化能 Q、指前因子 K_0 分别为 78.202 kJ/mol, 1.7043×10⁴ µm。

将扩散温度 T 值、生长指数 n 值列于二维直角坐标系中进行线性拟合,结果如图 10 所示。拟合结果得到生长指数与扩散温度之间的关系为:

n = 1.2009 - 0.0008T (5) 将上式代入式 (3) 中得:

图 10 生长指数(n)与扩散温度(T)的关系曲线

$$v = K_0 \left(\frac{t}{t_0}\right)^n \exp\left(-\frac{Q}{RT}\right)$$
(6)

将式(5)及相关计算结果代入上式即可获得 Ti/Ni 扩散层的生长动力学方程为:

$$y = 1.7043 \times 10^4 \exp\left(-\frac{78202}{RT}\right) t^{1.2009 - 0.0008T}$$
(7)

式中: y 为扩散层厚度(µm); t 为扩散时间(min); T 为 扩散温度(K); R 为摩尔气体常数 8.314 J·(mol·K)⁻¹。

通过上述计算可得到扩散层生长厚度与时间、温度的函数关系。利用公式(7)计算实验中所涉及的不同时间、温度下的层厚,所得具体数值见表3。与实际测量值对比可知: 总体吻合程度较高。相对700、750℃的结果对比而言,短时间或较低温度下个别计算值与测量值存在较大差异。这是因为短时低温下,扩散层较薄,在测量层厚时会产生较大的测量误差。但总体对比结果说明,利用该函数关系评价Ti/Ni 多层复合材料扩散层的生长规律是可行的。

3 结 论

1)本实验条件下,经过累积叠轧5道次轧制态试 样,Ti/Ni界面未发生扩散;在(550~750℃)/(0.5~8h) 热处理后,Ti/Ni界面发生扩散,Ti/Ni界面扩散层厚度 与热处理保温时间呈幂函数关系,与加热温度呈指数关 系。

2)随着热处理温度的升高,Ti-Ni扩散层的生长方式 由 650 ℃以下的体扩散控制逐渐转变为晶界扩散控制。

3)通过扩散动力学计算,求得 Ti/Ni 界面的活化 能 Q、指前因子 K₀分别为 78.202 kJ/mol, 1.7043×10⁴ μm。得到 Ti/Ni 界面固相反应层厚方程为:

$$y = 1.7043 \times 10^4 \exp\left(-\frac{78202}{RT}\right) t^{1.2009 - 0.0008T} \, \circ$$

参考文献 References

- [1] Zhang Zhe(张 喆), Zhu Peixian(竺培显), Zhou Shenggang (周 生 刚). Hot Working Technology(热加工工艺)[J], 2014, 43(18): 21
- [2] Lee K S, Lee S E, Sung H K et al. Materials Science & Engineering A[J], 2013, 583: 177
- [3] Milosavljevic M, Toprek D, Obradovic M et al. Applied Surface Science[J], 2013, 268: 516
- [4] Petrović S, Peruško D, Mitrić M. Intermetallics[J], 2012, 25: 27
- [5] Shi J, Cao Z H, Wei M Z et al. Materials Science & Engineering A[J], 2014, 618(17): 385
- [6] Bhatt P, Ganeshan V, Reddy V R et al. Applied Surface Science[J], 2006, 253(5): 2572
- [7] Topolski K, Wieciński P, Szulc Z et al. Materials & Design[J], 2014, 63: 479

- [8] Zhang Y, Cheng X, Cai H. Materials & Design[J], 2016, 92(15): 486
- [9] Behera A, Aich S, Behera A et al. Materials Today: Proceedings 2[J], 2015, 2(4-5): 1183
- [10] Ding H S, Lee J M, Lee B R et al. Materials Science and Engineering A[J], 2005, 408: 182
- [11] Ding H S, Lee J M, Lee B R et al. Materials Science and Engineering A[J], 2007, 444: 265
- [12] Saito Y, Utsunomiya H, Tsuji N et al. Acta Mater[J], 1999, 47(2): 579
- [13] Yang D K, Cizek P, Hodgson P et al. Scripta Materialia[J], 2010, 62(5): 321
- [14] Liu H S, Zhang B, Zhang G P. Journal of Materials Science & Technology[J], 2011, 27(1): 15
- [15] Chang H, Zheng M Y, Xu C et al. Materials Science and Engineering A[J], 2012, 543: 249
- [16] Mozaffari A, Hosseini M, Danesh M H. Journal of Alloys and Compounds[J], 2011, 509(41): 9938
- [17] Mozaffari A, Manesh H D, Janghorban K. Journal of Alloys and Compounds[J], 2010, 489(1): 103
- [18] Dehsorkhi R N, Qods F, Tajally M. Materials Science and Engineering A[J], 2011, 530(15): 63
- [19] Eizadjou M, Kazemi T A, Danesh M H et al. Composites Science and Technology[J], 2008, 68(9): 2003
- [20] Wang Kuaishe(王快社), Wang Feng(王峰), Zhang Bing(张兵) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(11): 2389
- [21] Ghalandari L, Moshksar M M. Journal of Alloys and Compounds[J], 2010, 506(1): 172
- [22] Hosseini M, Pardis N, Manesh H D. Materials & Design[J], 2017, 113: 128

- [23] Ghalandari L, Mahdavian M M, Reihanian M. Materials Science and Engineering A[J], 2014, 593: 145
- [24] Tayyebi M, Eghbali B. Materials Science and Engineering A[J], 2013, 559: 759
- [25] Chen M F, Yang X J, Liu Y. Surface and Coatings Technology[J], 2003, 173(2-3): 229
- [26] Zhang Bing(张 兵), Wang Le(王 乐), Zhang Xunhui(张巡辉) et al. Rare Metal Materials and Engineering(稀有金属材料 与工程)[J], 2016, 45(9): 2352
- [27] Tadayyon G, Mazinani M, Guo Y et al. Materials Science & Engineering A[J], 2016, 662(26): 564
- [28] Zhang X, Song J, Huang C et al. Journal of Alloys and Compounds[J], 2011, 509(6): 3006
- [29] Zhou Y, Wang Q, Sun D L et al. Journal of Alloys and Compounds[J], 2011, 509(4): 1201
- [30] Shao X, Guo X, Han Y et al. Journal of Material Research[J], 2014, 29(22): 2707
- [31] Gu Chenqing(谷臣清). Basis of Materials Engineering(材料工 程基础)[M]. Beijing: China Machine Press, 2003: 288
- [32] Zhou Shenggang(周生刚), Zhu Peixian(竺培显). The Development of the Shape of Metal Base Composite Functional Materials and Performance(金属基层状复合功 能材料的研制与性能)[M]. Beijing: Metallurgical Industry Press, 2015
- [33] Jiang Shuying(蒋淑英). Study on Diffusion-solution Zones in Al/Fe, Al/Ni and Al/Ti Liquid/solid Interfaces(Al/Fe, Al/Ni, Al/Ti 液/固界面扩散层研究)[D]. Beijing: China University of Petroleum (East China), 2010
- [34] Tanaka Y, Kajihara M, Watanabe Y. Materials Science and Engineering A[J], 2007, 445: 355

Interface Diffusion Behavior of Ti/Ni Multilayer Composites

Zhang Zhijuan¹, Zhang Bing^{1,2}, Shang Xiaodi¹, Wang Qiuyu¹, Wang Le¹, Wang Kuaishe^{1,2}

(1. Xi'an University of Architecture and Technology, Xi'an 710055, China)

(2. National & Local Engineering Researching Center for Functional Materials Processing, Xi'an 710055, China)

Abstract: The samples of Ti/Ni multilayered composites fabricated by 5 cycles ARB (accumulative roll bonding) were treated with different heat treatments. The microstructure, interface structure and thickness of Ti/Ni interface diffusion layer were analyzed by optical microscope (OM) and scanning electron microscopy (SEM) combined with the dynamic theory to study the diffusion behavior of Ti/Ni interface. The results show that the Ti/Ni interface does not diffuse during accumulative roll bonding processes. After heat treatment of (550~750 °C)/(0.5~8 h), diffusion occurs in the Ti/Ni interface; the thickness of diffusion layer is a power function of the experimental time, while the thickness is an exponential function of temperature. With the increase of heat treatment temperature, the growth of Ti-Ni diffusion layer transforms gradually from the body diffusion control under 650 °C to grain boundary diffusion control. Through the calculation and verification we can get the dynamics equation of reaction layer growth of Ti/Ni interface of Ti/Ni multi-layer structure composite material produced by 5 cycles ARB: $y = 1.7043 \times 10^4 \exp\left(-\frac{78202}{RT}\right)t^{1.2009-0.0008T}$.

Key words: Ti/Ni multilayer composites; heat treatment; interface diffusion behavior; dynamics theory

Corresponding author: Zhang Bing, Ph. D., Professor, College of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China, E-mail: r.zhang1112@163.com