定向凝固高温合金组织演变对持久性能的影响

崔金艳,张建庭,尧 健

(深圳市万泽中南研究院有限公司, 广东 深圳 518000)

摘 要:对比研究了定向凝固高温合金 GTD111 以及自主设计合金 WZ-D2 的铸态、热处理态和经 980 ℃/190 MPa 持久拉伸 后的 y'相、碳化物以及拓普密排(TCP)有害相析出的特征演变及其对持久性能的影响。结果表明: WZ-D2 的铸态共晶尺寸和 数量均显著小于 GTD111; 热处理态 WZ-D2 的 y'相面积分数明显高于 GTD111, 且立方度略高于后者。GTD111 中碳化物的 形貌多呈现汉字型,且更易分解。在 900 ℃以上温度,GTD111 的持久寿命远小于 WZ-D2,这与 2 种合金中共晶相数量和尺 寸、碳化物的分解、y'相的演化密切相关。

关键词: 定向凝固合金; 组织特征演变; 持久寿命

中图法分类号: TG146.1⁺5 文献标识码

文献标识码: A 文

文章编号: 1002-185X(2021)07-2568-09

铸造高温合金在工业燃气轮机涡轮叶片用材料中具 有举足轻重的地位,燃气轮机材料长期暴露于高温、应力 和腐蚀环境下,极易发生组织退化^[1,2]。如,y'相粗化、 MC碳化物分解以及有害相析出等^[3,4]。y'相是镍基高温合 金中主要强化相,其形貌、尺寸、数量等的变化将对合金 性能产生重要影响。合金中碳化物形态主要有条块状、颗 粒状和汉字型3种。当碳化物以颗粒状或细小块状在晶内 和沿晶界均匀分布时,可起到阻碍位错运动和抑制晶界滑 移的作用,进而提高合金强度以及蠕变抗力^[5,6]。但汉字 型和条状粗大碳化物由于尺寸大, 棱角多, 蠕变期间在近 碳化物区易产生应力集中,极易在碳化物处萌生裂纹,碳 化物与基体之间的界面成为易于裂纹扩展的通道^[7-9]。此 外,初生 MC 碳化物处于热力学亚稳状态,在服役过程中 会发生分解退化,沉淀析出二次相。研究^[10,11]表明,高温 合金的组织稳定性与初生 MC 的热稳定性密切相关,MC 分解过程会导致元素偏析的改变,使晶界和晶内组织发生 变化,如促进晶内沉淀析出 M23C6,析出有害相,晶界粗 化等, 使合金寿命降低。因而 MC 的形貌、数量、分布以 及稳定性也对高温合金的性能具有重要影响。

目前,GTD111 合金是 GE 燃气轮机叶片的主要应用 材料,该合金可制备定向或等轴晶叶片,其热处理组织由 y基体、y'相、y/y'共晶、碳化物以及少量 TCP 相组成。针 对该合金长期时效下 y'相形貌演化以及碳化物演化的单 方面研究已有不少报道^[3,4,8-11,12,13],但针对共晶、y'相、碳 化物以及 TCP 相这些因素对性能的综合影响却鲜有报 道。本实验以 GTD111 为参照,对比 GTD111 和自主研发 的定向凝固高温合金 WZ-D2,研究了 2 种合金凝固组织 特征,在热处理态及 980 ℃/190 MPa 持久断裂后的 y'相、 碳化物、TCP 相的特征,分析了这些特征对合金持久性 能的综合影响,为优化合金性能提供思路。

1 实 验

实验材料为GTD111高温合金及自主设计的WZ-D2 合金。采用真空感应炉熔炼母合金,使用真空定向凝固 炉以相同的工艺参数沿[001]方向制备了2种合金的定向 试棒,合金名义化学成分见表 1。采用 STA504 型同步 差热分析仪对合金进行差热分析,参照 Pandat 和 JmatPro 的模拟结果在 DTA 降温曲线上确定各种相的析出温度。

对 2 种合金的试棒进行了相同的热处理(1121 ℃/2 h, 843 ℃/8 h),分别在铸态和热处理态的试棒上取金相试 样,并进行研磨抛光腐蚀(腐蚀液 50 g C₃H₆O₃+30 g HNO₃+2 mL HF)。采用 Nikon MM400 金相显微镜沿合 金凝固方向观察 2 种状态下的共晶组织,利用 Zeiss

表 1 GTD111 及 WZ-D2 合金名义成分

Table 1	No	minal	com	iposi	tion	of G	TD1	11 a	nd WZ	-D2 all	oys (a	v/%)
Alloy	Co	Cr	Al	Ti	Та	Nb	W	Mo	С	В	Zr	Ni
GTD111	9.5	14.0	3.0	4.9	2.8	0	3.8	1.5	0.1	0.015	0.04	Bal.
WZ-D2	9.5	14.0	4.5	2.3	4.7	1.0	4.0	1.5	0.095	0.008	0.05	Bal.

收稿日期: 2020-08-20

基金项目:深圳市发展和改革委员会项目(SZDRC 20181000)

作者简介: 崔金艳, 女, 1988 年生, 硕士, 深圳市万泽中南研究院有限公司, 广东 深圳 518000, 电话: 0755-88602381, E-mail: cuijinyan8802@126.com

Sigma300 场发射扫描电镜(SEM)进行微观组织观察,并 用能谱仪(EDS)对相的成分进行分析。运用 ImageJ 统计 共晶体积分数、热处理态下的 y'相尺寸(feret diameter)、 y'相面积分数、y'相形貌参数(shape factor、aspect ratio、 compactness 及 feret ratio),每种合金中 y'相统计数量不 少于 300 个。

在经热处理的试棒上取持久试样(见图 1),分别在 1000 ℃/135 MPa、980 ℃/230 MPa、980 ℃/190 MPa、 900 ℃/320 MPa、816 ℃/483 MPa 条件下测定合金的持 久寿命。利用 SEM 对 980 ℃/190 MPa 持久断口及附近 金相进行观察。

图1 持久试样示意图

Fig.1 Schematic of rupture specimen

2 结果与分析

2.1 共晶组织的析出

图 2 为 GTD111 和 WZ-D2 沿合金凝固方向观察到 的共晶组织。由图可见,在铸态(DS)和热处理态(HT), WZ-D2 的共晶数量均较 GTD111 减少,单个共晶区域的 尺寸也明显减小。图 3 比较了 2 种合金在铸态和热处理 态下的共晶体积分数,WZ-D2 的铸态共晶体积分数约为 5.4%,GTD111 约为 8.6%;经相同热处理后,2 种合金 的共晶体积分数显著下降,WZ-D2 的共晶体积分数约为 3%,GTD111 约为 6.7%。从 DTA 的降温曲线(图 4) 可知,2 种合金共晶析出温度相近,但 GTD111 的 y/y' 共晶析出峰较明显(即峰面积较大),可定性地认为 GTD111 析出的 y/y'共晶较多,这对于合金的性能将产生不 利的影响^[14,15]。

2.2 y'相形貌、尺寸与体积分数

为便于比较,此处讨论的 y'相均位于枝晶干。由图 5 可见,铸态时,GTD111的一次 y'尺寸较小,呈现不规 则形貌,包含三角形、不规则四边形、圆形。WZ-D2的 一次 y'尺寸较 GTD111 明显长大,y'多为蝶形,部分已呈 现规则四边形形貌(图 5b 箭头所示)。经热处理后, WZ-D2中 y'相的整体立方度优于 GTD111。为定量表征 y'相尺寸及形貌,用 ImageJ 统计 y'相的等效直径(feret diameter)、形状因子(shape factor)、纵横比(aspect ratio,

图 2 2 种合金在铸态和热处理态的共晶组织

Fig.2 Eutectic microstructures of GTD111 (a, c) and WZ-D2 (b, d) alloys under directional solidification (DS) (a, b) and heat treatment (HT) (c, d) condition

Fig.3 Eutectic volume fractions of the two alloys under DS and HT condition

AR) 以及紧密度 (compactness),	见公式(1)~(4) ^[16] :
Feret diameter = $\sqrt{4S / \pi}$	(1)
Shape factor = $4\pi S/C^2$	(2)
Aspect Ratio = $\frac{b}{a}$	(3)

$Compactness = C^2 / S \tag{4}$

其中, *S* 为 γ '相对应面积; *C* 为 γ '相对应的周长; *a* 和 *b* 是最佳拟合椭圆的主轴和副轴,均为软件自行计算。另 有文献[17]用 feret ratio (FR) 对合金中 γ '的立方度进行 定量表征,当 FR=1 时, γ '为球形; 当 FR \approx 1.41 时, γ '为 立方体; 当 FR>1.41 时, γ '为长方体。

图 4 2 种合金的 DTA 降温曲线

等效直径对 y'相粒子形状不敏感,更能保证测量的 y'相粒子尺寸的准确性,用于定量表征 y'相尺寸。由图 6 可知,2种合金热处理态的y'尺寸基本无差别,约为420 nm。 由图 7 可知,2 种合金热处理态 y'面积分数相差较多, GTD111 较 WZ-D2 下降约 18%。由图 6 和图 7 可推断,

图 5 2 种合金在铸态和热处理态的 y'相形貌

Fig.5 Microstructures of the γ' phase of GTD111 (a, c) and WZ-D2 (b, d) alloys under DS (a, b) and HT (c, d) condition

y'相对 WZ-D2 的强化作用更显著。

用于表征 y'相形貌的各参数值与 y'相形貌的关系 见表 2。对 y'形貌定量表征统计见表 3。由表 3 知, 2 种 合金的形状因子、纵横比、紧密度相差不大,而 FR 均 偏离 1.41。图 8 显示 GTD111 中 y' 相的 FR 集中于区间 1.2~1.4,该区间占比大于 65%; WZ-D2 中 y'相的 FR 集 中于区间 1.35~1.6, FR=1.41 附近的 y'占比明显高于 GTD111, 说明 WZ-D2 的 y'形貌立方度更大, 与图 5 中 观察到的组织形貌相一致。这主要与 2 种合金成分差 异导致的错配度 δ 不同有关, δ 越大, 立方度越大。 y'形貌取决于晶格应变能和界面能之间的竞争,当 δ 较 小时,界面能占主导,界面能与 y/y'两相界面面积成正 比, 球形的比表面积最小, y'相趋于球化; 当 δ 增大时, 应变能占主导,沿<001>方向具有最低弹性模量,y'相择 优长大,趋于立方形貌^[18]。合金中 W、Co、Cr、Mo 偏 析于 y 相, Al、Ti、Ta 及 Nb 偏析于 y'相^[3,19-21], 且 Ta 和 Nb 与 Ni 的结合更稳定, 当富含 Ta 和 Nb 时, 则会置 换 Al 和 Ti, 使 y'相晶格常数增大, 进而增大晶格错配度

图 6 热处理态 2 种合金 y'相的尺寸

图 7 热处理态 2 种合金 y'相的面积分数

Fig.7 Area fractions of γ' phase of the two alloys under heat treatment condition

表 2 y'相形貌与形貌参数值的关系

 Table 2
 Relationship between γ' phase morphology and morpho

logy narameters

log, purume		
Parameter	Spherical	Cube
Shape factor	1	0.79
Aspect ratio	1	1
Compactness	4π(≈12.566)	16
Feret ratio	1	1.41

表 3 2 种合金经热处理后的 y'相形貌参数值统计结果

Table 3 Values of morphology parameter of γ' phase of the two

alloys under heat treatment condition

Alloy	Shape factor	Aspect ratio	Compactness	Feret ratio
GTD111	0.77±0.05	0.84±0.09	16.31±1.19	1.34±0.12
WZ-D2	0.77±0.05	0.80±0.12	16.45±1.03	1.55±0.19

Fig.8 Feret ratio frequency of GTD111 (a) and WZ-D2 (b) alloys

$$\left(\delta = \frac{2(\alpha_{y'} - \alpha_{y})}{\alpha_{y'} + \alpha_{y}}\right)$$
,其中 a_{y} 为 y '相的晶格常数, a_{y} 为 y 基

体的晶格常数)。WZ-D2 中的 Ta 和 Nb 含量显著高于 GTD111 合金,促进 y/y'两相错配度增大,y'相立方度增加。 2.3 碳化物形貌

热处理后 2 种合金中碳化物的形貌和分布如图 9。 GTD111 的枝晶干和枝晶间均析出碳化物。其中,枝晶 干析出的碳化物数量较少,多呈块状,部分为汉字型; 枝晶间(包含晶界和共晶)析出的碳化物多为汉字型, 如图9a中箭头指示的亮白色碳化物,部分尺寸可达50 µm。 共晶处(图 9b)发现亮白色和浅灰色不同衬度的析出物 以及有害针状相。据文献[3,6], GTD111 在标准热处理 态后,组织中的碳化物有 MC(主要元素为 Ta 和 Ti)和 $M_{23}C_6$,其中 $M_{23}C_6$ 为MC的分解产物。JMatPro 拟合结 果(图 10)表明, GTD111 中存在 MC 和 M₂₃C₆(图 10a₁), *M*C 中主要成分为 Ta、Ti 和 C (图 10a₂), *M*₂₃C₆ 中主要 成分为 Cr、Mo 和 C (图 10a3)。为进一步确定碳化物的 类型,对图 9b 不同衬度碳化物做 EDS 分析。亮白色碳 化物的成分见表 4, Ta、Ti和C含量占比大,表 4的碳 化物主要成分及含量近似于文献[3]中 MC 的 EDS 成分; 浅灰色碳化物的主要化学成分见表 5, Cr 和 Mo 含量占 比大。综合文献、JMatPro 以及 EDS 分析结果,可确定 GTD111 中白色碳化物为 MC, 浅灰色碳化物为 M23C6。 此外, 共晶处细小的 y'相明显可见, 这是由于 MC 发生 了以下分解反应[8]:

 $MC + \gamma \to M_{23}C_6 + \gamma' \tag{5}$

WZ-D2 经过标准热处理后,碳化物几乎都析出于枝 晶间,枝晶干仅有极少量的碳化物析出,且枝晶间和枝 晶干的碳化物几乎都呈块状形貌,极少数呈长条状。 JMatPro 拟合结果(图 10)表明,WZ-D2 中存在 *M*C 和 $M_{23}C_6$ (图 10b₁), *M*C 中主要成分为 Ta、Ti、Nb 和 C (图 10b₂), $M_{23}C_6$ 中主要成分为 Cr、Mo 和 C (图 10b₃)。为 进一步确定碳化物的类型, 对图 9d 碳化物(Location 1-1) 做 EDS 分析。图 9d 中亮白色碳化物成分见表 6, 主要 成分为 Ta、Nb、Ti 和 C, 与 JMatPro 结果一致, 可确定 亮白色碳化物为 *M*C。在 WZ-D2 中未见不同衬度的 $M_{23}C_6$, 说明 WZ-D2 中的 *M*C 碳化物稳定性较高。

对比 GTD111 和 WZ-D2 中碳化物特征可知,热处 理后 WZ-D2 中析出的碳化物尺寸小,几乎无长条形和 汉字型,碳化物均匀分布于晶界。这主要与 WZ-D2 中 Nb 含量高有关,Nb 能促进组织细化和 MC 碳化物分布 均匀化^[22]。WZ-D2 中 MC 稳定性更高,主要与合金中 MC 稳化元素 Ta、Ti、Nb 含量较高有关,(W+Mo)/(Ta+Ti) 和 Ti/Ta 比值越大,MC 越不稳定^[23]。分析表明,WZ-D2 中碳化物对合金的强化作用将更显著,这将在一定程度 上提高合金的使用寿命。

2.4 持久性能

GTD111 和 WZ-D2 在不同条件下的持久寿命如表 7 所示。由表 7 可见,2 合金在 900 ℃/320 MPa 条件下的 持久寿命相接近。当温度高于 900 ℃,WZ-D2 的持久寿 命明显高于 DTG111。由于材料的实际应用温度高于 900 ℃,本研究以 980 ℃/190 MPa 下的持久断口作为对

图 9 2 种合金标准热处理后的碳化物形貌 Fig.9 Microstructures of carbides in the two alloys after heat treatment: (a, b) GTD111 and (c, d) WZ-D2

图 10 JmatPro 计算得到的 2 种合金平衡相图

Fig.10 Diagrams of the two alloys calculated by JmatPro: (a1~a3) GTD111 and (b1~b3) WZ-D2

表 4 图 9b 中经标准热处理的 GTD111 中亮白色碳化物的 EDS 分析结果

 Table 4
 EDS results of bright white carbide in GTD111 after heat treatment in Fig.9b

Element	С	Ti	Cr	Co	Ni	Мо	Та	W
ω/%	12.68	24.42	6.14	3.31	15.99	1.95	28.2	4.58
at%	46.68	22.54	5.22	2.48	12.04	0.9	6.89	1.10

表 5 图 9b 中经标准热处理的 GTD111 中浅灰色碳化物的 EDS 分析结果

 Table 5
 EDS results of grey carbide in GTD111 after heat

 treatment in Fig.9b

ι	reatifien	t III Fig	.70				
Element	С	Ti	Cr	Co	Ni	Мо	W
ω/%	7.77	2.09	51.24	2.11	3.94	17.49	15.37
at%	31.62	2.14	48.20	1.75	3.28	8.92	4.09

象进行进一步分析。图 11 为 2 种合金在 980 ℃/190 MPa 下的持久宏观断口。2 种合金在持久过程中均发生明显 颈缩,有明显韧涡和撕裂棱,为典型的韧性断裂。

图12为GTD111和WZ-D2持久断口附近的金相组 织。在近断口及距断口15 mm处,2种合金的y'均完全筏

表 6 图 9d 中经标准热处理的 WZ-D2 中亮白色碳化物 EDS 分析 结果

 Table 6
 EDS results of bright white carbide in WZ-D2 after heat treatment in Fig.9d

Element	С	Ti	Cr	Co	Ni	Nb	Та
ω /%	13.47	9.53	3.57	2.07	9.44	30.70	31.22
at%	53.71	9.54	3.29	1.68	7.70	15.83	8.26

化, 筏化方向垂直于应力方向。在螺纹端, 与热处理态 (图5c)相比, GTD111的γ'明显球化, 但未见粗化连接 现象; 而WZ-D2的螺纹夹持端明显可见垂直于应力方向 的部分筏化现象。比较2种合金在相同位置处的金相可 知, WZ-D2合金中γ'相筏化程度更完善。2种合金持久过 程中呈现的不同筏化现象主要与γ/γ'两相错配度δ有关, γ/γ'两相错配度δ越大, γ'越易筏化, 具有立方形貌的γ'相 会促进γ'筏化组织的完善度^[24]。

筏化被认为是提高定向高温合金<001>方向抗蠕变 性能的强化过程^[17,18]。在高温低应力条件下,随着 γ/γ'两 相错配度δ增大,蠕变过程中更容易形筏,形成完善度 更高的筏形组织,并在 γ/γ'两相共格界面形成更完善的位 错网,阻碍位错运动,进而提高高温抗蠕变性能^[25]。这 也在一定程度上解释了 WZ-D2 的高温持久寿命高于 GTD111 的原因。

表 7 2 种合金在不同条件下的持久性能

Table 7	Stress rupture property of	f the two alloys at different stresses and	l temperatures
		•/	

Alloy	Temperature/°C	Stress/MPa	Life/h	Elongation/%	Area reduction/%
GTD111	1000	135	148	26	56
GTD111	980	190	56	33	61
GTD111	980	190	59	29	58
GTD111	980	230	16	27	59
GTD111	900	320	73	24	48
GTD111	816	483	188	24	43
WZ-D2	1000	135	499	19	68
WZ-D2	980	190	106	30	60
WZ-D2	980	190	110	26	57
WZ-D2	980	230	27	19	58
WZ-D2	900	320	67	10	32
WZ-D2	816	483	36	4	9

图 11 2 种合金在 980 ℃/190 MPa 试验条件下的持久断口形貌 Fig.11 Stress rupture fracture morphologies of the two alloys at 980 ℃/190 MPa: (a, c) GTD111 and (b, d) WZ-D2

图 12 2 种合金在 980 ℃/190 MPa 试验条件下的持久试样断口附近金相组织

Fig.12 Microstructures near the fracture surface of the ruptured specimens at 980 °C/190 MPa: (a₁~a₃) GTD111, (b₁~b₃) WZ-D2; (a₁, b₁) near fracture surface, (a₂, b₂) 15 mm away from the fracture surface, (a₃, b₃) clamping end

3 结 论

1) 在铸态和热处理态条件下,GTD111 中的共晶数 量和尺寸均大于 WZ-D2。

2) 热处理态时,相较于 GTD111, WZ-D2 中的 γ' 相面积分数显著增大,γ'立方度更高,γ'强化效果更好; WZ-D2 中碳化物更稳定,强化效果更好。

3) 在 900 ℃以上温度, WZ-D2 的持久寿命远高于 GTD111。980 ℃/190 MPa 的断口组织说明综合原因为 WZ-D2 中的 Ta、Nb 含量较高,使错配度增高,持久过 程中 y'容易筏化;共晶数量少; MC 碳化物强化效果好。

参考文献 References

- [1] Yan Xuewei(闫学伟), Wang Runnan(王润楠), Tang Ning(唐宁) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2018, 47(6): 1878
- [2] Luo Liang(罗 亮), Xiao Chengbo(肖程波), Chen Jingyang(陈晶阳) et al. Journal of Materials Engineering(材料工程)[J], 2019, 47(6): 34
- [3] Baig G C, In S K, Doo H K et al. Materials Science and Engineering A[J], 2008, 478(1-2): 329
- [4] Baig G C, In S K, Doo H K et al. Solid State Phenomena[J], 2007, 124-126: 1505
- [5] Tian Ning(田 宁), Tian Sugui(田素贵), Zhang Baoshuai(张宝帅) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学 报)[J], 2018, 28(3): 536

- [6] Yang C X, Xu Y L, Zhang Z X et al. Materials and Design[J], 2013, 45: 308
- [7] Yang Jinxia(杨金侠), Wei Wei(魏 薇), Liu Lu(刘 路) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2016, 45(4): 975
- [8] Tian Ning(田 宁), Tian Sugui(田素贵), Yu Huichen(于慧臣).
 The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2019, 29(7): 1427
- [9] Liu L, Sommer F, Fu H Z. Scripta Metallurgica et Materialia[J], 1994, 30(5): 587
- [10] Xiao Xuan(肖 旋), Zeng Chao(曾 超), Hou Jieshan(侯介山) et al. Acta Metallurgica Sinica(金属学报)[J], 2014, 50(9): 1031
- [11] Liu L R, Jin T, Zhao N R et al. Materials Science and Engineering A[J], 2003, 361(1-2): 191
- [12] Wang X M, Zhou Y, Zhao Z H et al. Journal of Materials Engineering and Performance[J], 2015, 24(4): 1492
- [13] Mohammad B, Sajjadi S A. Phase Transitions[J], 2012, 85(1-2): 1
- [14] Zheng Liang(郑 亮), Xu Wenyong(许文勇), Liu Na(刘 娜) et al.
 Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2018, 47(2): 530
- [15] Jiao Sha(焦 莎), Zhang Jun(张 军), Jin Tao(金 涛) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(5): 1028
- [16] Wen Ying(温莹), Tian Gaofeng(田高峰), Liu Guoquan(刘国权) et al. Chiniese Journal of Stereoloogy and Image Analysis(中国 体视学与图像分析)[J], 2007, 12(3): 162

- [17] Huang Taiwen(黄太文), Lu Jing(卢 晶), Xu Yao(许 瑶) et al. Acta Metallurgica Sinica(金属学报)[J], 2019, 55(11): 1427
- [18] Liu Gang(刘 刚), Liu Lin(刘 林), Zhang Shengxia(张胜霞) et al. Acta Metallurgica Sinica(金属学报)[J], 2012, 48(7): 845
- [19] Wang Wenzhen(王文珍). Thesis for Doctorate(博士论文)[D].
 Shenyang: Institude of Metal Research, Chinese Academy of Science, 2007
- [20] Yin Fengshi(殷凤仕). Thesis for Doctorate(博士论文)[D].
 Shenyang: Institute of Metal Research, Chinese Academy of Science, 2007

- [21] Zhao Tan(赵 坦). Thesis for Doctorate(博士论文)[D]. Nanjing: Nanjing University of Science & Technology, 2009
- [22] Zhang Weiguo(张卫国), Liu Lin(刘林), Zhao Xinbao(赵新宝) et al. China Foundry(铸造)[J], 2009, 58(1): 1
- [23] Rho B S, Nam S W. Materials Science and Engineering A[J], 2000, 291(1-2): 54
- [24] Caron P, Khan T. Materials Science and Engineering[J], 1983, 61(2): 173
- [25] Zhang J X, Wang J C, Harada H et al. Acta Materialia[J], 2005, 53(17): 4623

Effects of Microstructural Evolution of Directionally Solidified Superalloy on Stress Rupture Property

Cui Jinyan, Zhang Jianting, Yao Jian

(Shenzhen Wedge Central South Research Institute Co., Ltd, Shenzhen 518000, China)

Abstract: The microstructural evolution including γ' phase, carbide and topologically close-packed (TCP) phase of GTD111 and designed alloy WZ-D2 were researched in directional solidification condition, heat treatment condition and ruptured at 980 °C/190 MPa condition. The effects of these microstructural evolution on stress rupture property were also studied. The results show that the sizes and volume fractions of eutectic phase in WZ-D2 are both significantly less than those in GTD111. The γ' phase area fraction of WZ-D2 is apparently more than that of GTD111 after heat treatment, and the γ' phase cubic degree of WZ-D2 is slightly higher than that of GTD111. The morphology of *M*C carbides in GTD111 is mostly presented as Chinese characters and is more unstable. The stress rupture life of GTD111 are obviously shorter than that of WZ-D2 when the work temperature is above 900 °C, which is closely related to the difference in quantity and size of eutectic phase, the morphology and decomposition of *M*C carbide, and the evolution of γ' phase in the two alloys.

Key words: directionally solidified superalloy; microstructural evolution; rupture life

Corresponding author: Cui Jinyan, Master, Shenzhen Wedge Central South Research Institute Co., Ltd, Shenzhen 518000, P. R. China, Tel: 0086-755-88602381, E-mail: cuijinyan8802@126.com