Judd-Ofelt Analysis of Er, Yb Co-doped Y₂O₃ Transparent Ceramics

Hu Yue, Pan Wei

State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China

Abstract: This paper presents a spectroscopic study of Er, Yb co-doped Y_2O_3 transparent ceramics with 20 at% Yb³⁺ and varied Er³⁺ concentration (0.5 at% to 5 at%). Room-temperature absorption spectra and refractive indices were measured. Standard Judd-Ofelt analysis was applied and the intensity parameters were calculated. With Er³⁺ concentration increasing, Ω_2 decreases from 5.41 to 3.36, Ω_4 ranges from 0.96 to 1.29 and Ω_6 ranges from 0.64 to 0.72. The spectroscopic quality factor $X_{4/6}$ ranges from 1.46 to 1.88. The radiative lifetime of ${}^{4}I_{13/2}$ manifold is longest in the Er, Yb co-doped Y_2O_3 transparent ceramic with 0.5 at% Er³⁺ content. All suggest that the Er, Yb co-doped Y_2O_3 transparent ceramic could be a potential material for near-infrared laser application.

Key words: Judd-Ofelt; Y2O3; transparent ceramic

Among all the rare-earth (RE) ions, Er^{3+} -Yb³⁺ system has been proved to be one of the most attractive systems for laser oscillation, especially for the eye-safe region at around 1.5 µm and the water-absorption region at around 3 µm^[1-3]. The broad absorption band of Yb³⁺ around 980 nm allows the system to be pumped efficiently by diode lasers. However, due to the low laser-induced damage threshold and the poor chemical/thermal stability of host materials, the development of this system is hampered.

 Y_2O_3 transparent laser ceramic has earned a lot of attention as an alternative to single crystals to fabricate large scale laser material with engineered thermo-optic properties. This material shows high chemical/thermal stability, high thermal conductivity, high dopant capacity, high damage threshold and large transmittance range. Many works have been done to study RE doped Y_2O_3 transparent ceramics, such as Yb: $Y_2O_3^{[4,5]}$, Nd: $Y_2O_3^{[6]}$, Nd, Yb: $Y_2O_3^{[7]}$ and Er, Yb: $Y_2O_3^{[8,9]}$. However, there are still some spectroscopic parameters that need to be determined in the Er, Yb: Y_2O_3 transparent ceramic for future application.

In this work, we used the Judd-Ofelt (J-O) theory to study the electric dipole transitions in the vacuum-sintered Er, Yb: Y_2O_3 transparent ceramics. The wavelength-dependent refractive indices were measured with ellipsometer. The optical intensity parameters, radiative transition probabilities and radiative lifetimes of Er^{3+} emission in the Er, Yb co-doped Y_2O_3 transparent ceramics were determined.

1 Experiment

Raw materials were 99.99% purity powders of Y_2O_3 , Er_2O_3 and Yb_2O_3 . La_2O_3 and ZrO_2 were used as sintering aids. The powders were mixed according to the formula $Y_{0.68-x}Yb_{0.2}La_{0.09}Zr_{0.03}Er_xO_{1.515}$ (*x*=0~0.05) and ball-milled in ethanol for over 10 h. The slurry was dried and sieved through a 200-mesh (74 µm) screen, and then pressed into pellets and cold isostatic pressed at 200 MPa for 2 min. The pressed pellets were sintered at 1800 °C for 20 h under 1.0×10^{-3} Pa. After sintering, the ceramics were annealed at 1450 °C for 10 h in air and polished on both sides.

The absorption spectra were measured with the UV-VIS-NIR spectrophotometer (UV-3600, Shimadzu, Tokyo, Japan), with a deuterium lamp as light source for the ultraviolet range and a halogen lamp for the visible and near-infrared range. The refractive indices were acquired with the ellipsometer (V-VASE, J.A. Woollam, Nebraska, USA).

2 Results and Discussion

2.1 Absorption spectra and refractive indices

Fig.1 shows the absorption coefficient obtained from the transmittance spectrum using the followed equation:

Received date: July 20, 2017

Foundation item: National Natural Science Foundation of China (51272120, 51323001)

Corresponding author: Pan Wei, Ph. D., Professor, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China, Tel: 0086-10-62772858, E-mail: panw@mail.tsinghua.edu.cn

$$\alpha(\lambda) = \frac{1}{d} \ln \frac{I}{I_0} = \frac{1}{0.43d} \log T \tag{1}$$

where α is the absorption coefficient; *d* is the thickness of the specimen; *T* is the in-line transmittance measured by the spectrophotometer; I_0 and *I* are the light intensity before and after transmitting through the specimen, respectively. After subtracting the baseline, the influence caused by surface reflection and scattering was ruled out and the absorption spectra of the Er, Yb: Y₂O₃ transparent ceramics were determined.

Fig.1 shows that there are 11 absorption bands in the Er³⁺ single-doped Y₂O₃ transparent ceramic, centered at 366, 379, 407, 453, 490, 522, 546, 654, 800, 980 and 1536 nm, which correspond to the Er³⁺ transition from ⁴I_{15/2} to ⁴G_{7/2}+⁴G_{9/2}+²K_{15/2}, ⁴G_{11/2}, (²G, ⁴F, ²H)_{9/2}, ⁴F_{3/2}+⁴F_{5/2}, ⁴F_{7/2}, ²H_{11/2}, ⁴S_{3/2}, ⁴F_{9/2}, ⁴I_{9/2}, ⁴I_{11/2} and ⁴I_{15/2}→⁴I_{11/2}) is weak and narrow, while the absorption of Yb³⁺ (²F_{7/2}→²F_{5/2}) is strong and broad. In the Er, Yb co-doped Y₂O₃, Er: ⁴I_{15/2}→⁴I_{11/2} absorption bands, suggesting a possible energy transfer from Yb³⁺ to Er³⁺. This demonstrates the possibility of efficient InGaAs diode pumping for the Er-Yb laser system.

To adopt the Judd-Ofelt analysis, the refractive index *n* of the bulk material is necessary. Fig.2 shows the wavelength-dependent refractive indices of Er, Yb co-doped Y_2O_3 transparent ceramics measured by the ellipsometer. The refractive indices decrease with the wavelength increasing and can be fitted with the Sellmeier equation:

$$n^{2}\left(\lambda\right) = 1 + \frac{B\lambda^{2}}{\lambda^{2} - C}$$
⁽²⁾

where *n* is the refractive index and λ is the wavelength in vacuum. In this work, we assume that λ approximately equals to the wavelength in air. *B* and *C* are Sellmeier coefficients that can be determined from the experimental results. The Sellmeier coefficients calculated from Fig.2 are listed in Table 1.

Fig.1 Absorption spectra of Er/Yb single-doped and co-doped Y_2O_3 transparent ceramics

Fig.2 Refractive indices of the Er, Yb co-doped Y₂O₃ transparent ceramics

 Table 1
 Sellmeier coefficients of the refractive indices for the

 Fr and Vb ac dapad V-O: transportate accomias

Ef and 10 co-doped 1203 transparent cerannes							
Specimen	Er con- tent/at%	Yb con- tent/at%	В	$C/\times 10^4$			
Specimen-1	0.5	20	2.74	2.99			
Specimen-2	1	20	2.77	1.57			
Specimen-3	2	20	2.80	2.17			
Specimen-4	3	20	2.65	2.60			
Specimen-5	5	20	2.87	2.71			

2.2 Judd-Ofelt analysis

Absorption coefficients in Fig.1 were used to determine the phenomenological Judd-Ofelt parameters in Er, Yb co-doped Y_2O_3 transparent ceramics. The Er^{3+} absorption peaks used in Judd-Ofelt analysis are listed in Table 2. The Er^{3+} : ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$ absorption overlapped with the Yb³⁺: ${}^2F_{7/2} \rightarrow {}^2F_{5/2}$ absorption, so we didn't use it in the analysis. Some Er^{3+} absorption peaks overlapped with each other, so they were treated together. Details about the Judd-Ofelt analysis can be found in many works^[10,11]. This method has been extensively used to understand the nature of lanthanide luminescence^[12,13].

With the absorption coefficients in Fig.1, measured line strength $S_{\text{meas}}(J \rightarrow J')$ of the absorption bands can be determined using the following equation:

$$S_{\text{meas}}\left(J \to J'\right) = \frac{3\text{ch}\left(2J+1\right)n}{8\pi^{3}\overline{\lambda}e^{2}N_{0}} \left[\frac{9}{\left(n^{2}+2\right)^{2}}\right] \int \alpha(\lambda) d\lambda \qquad (3)$$

where α is the absorption coefficient; *J* and *J'* are the total angular momentum quantum numbers of the initial and final states, respectively; *n* is the refractive index; *N*₀ is the concentration of Er³⁺; *c* is the speed of light in vacuum, *h* is the Plank constant and λ is the average wavelength obtained by the following equation:

$$\frac{-}{\lambda} = \frac{\int \lambda \alpha(\lambda) d\lambda}{\int \alpha(\lambda) d\lambda}$$
(4)

The theoretical line strength can be expressed in the fol-

lowing form:

$$S_{\text{cal}}(J \to J') = \sum_{t=2,4,6} Q_t \left| \left\langle (S,L) J \right\| U^{(t)} \| (S',L') J' \right\rangle \right|^2 (5)$$

where Ω_2 , Ω_4 and Ω_6 are the Judd-Ofelt intensity parameters and $\langle ||U^{(t)}|| \rangle$ are the doubly reduced matrix elements between states (*S*, *L*, *J*) and (*S'*, *L'*, *J'*). The matrix elements depend only on the angular momentum of the Er^{3+} states and are independent of the host material, which can be obtained from the tables of Nielson and Koster^[14]. In this work, we used the matrix element value listed in the paper of Sardar et al (Table 2)^[15]. Assuming $S_{\text{meas}} = S_{\text{cal}}$, the Judd-Ofelt intensity parameters Ω_2 , Ω_4 and Ω_6 can be determined by least-square-error fitting. The results are listed in Table 3. From Table 3 we can see that Ω_2 decreases with increasing Er^{3+} concentration, which means that the crystal environment around the Er^{3+} ions becomes more and more disordered.

 $X_{4/6}=\Omega_4/\Omega_6$ is defined as the spectroscopic quality factor. In our work, the $X_{4/6}$ factor of Er, Yb co-doped Y_2O_3 with different Er^{3+} concentration ranges from 1.46 to 1.88 (Table 3), which lays in the range of 0.126~3.372 for Er^{3+} according to Kaminskii's work^[16]. The $X_{4/6}$ values in Er, Yb co-doped Y_2O_3 transparent ceramics are smaller than the values reported in Er single-doped Y_2O_3 single crystals and ceramics^[17-19]. This suggests that the Er, Yb co-doped Y_2O_3 transparent ceramics may lead to better laser output.

With the intensity parameters Ω_2 , Ω_4 and Ω_6 , the radiative decay rates $A(J \rightarrow J')$ from the excited states (J) to the lower states (J') and the radiative lifetime τ of Er^{3+} were calculated according to the following equation:

$$A(J \to J') = \frac{64\pi^4 e^2}{3h\lambda (2J+1)} \frac{(n^2+2)^2}{9n} \sum_{t=2,4,6} \Omega_t \left| \left\langle (S,L) J \right\| U^{(t)} \right\| \left(S',L' \right) J' \right\rangle^2 (6)$$

$$\mathcal{T}(J) = \frac{1}{\sum_{I'} A(J \to J')}$$
(7)

 Table 2
 Parameters used in Judd-Ofelt analysis^[15]

	$[U^{(2)}]^2$	$[U^{(4)}]^2$	$[U^{(6)}]^2$	$S_{\rm meas}(\times 10^{-20}{\rm cm}^2)$			
${}^{4}I_{15/2} \rightarrow$				0.5at%	2at%	5at%	
				Er	Er	Er	
${}^4G_{9/2} \!\!+ \!\!\!{}^4G_{11/2}$	0.9183	0.7678	0.2407	5.867	5.459	3.891	
${}^{2}G_{9/2}$	0.0000	0.0189	0.2256	0.217	0.182	0.194	
${}^4F_{3/2} \!\!+ \! {}^4F_{5/2}$	0.0000	0.0000	0.3504	0.244	0.134	0.131	
${}^{4}\!F_{7/2} \!+\! {}^{2}\!H_{11/2} \\ +\! {}^{4}\!S_{3/2}$	0.7125	0.5594	0.9402	4.973	4.820	3.811	
${}^{4}F_{9/2}$	0.0000	0.5354	0.4618	0.839	0.994	0.910	
${}^{4}I_{9/2}$	0.0000	0.1733	0.0099	0.071	0.156	0.147	
${}^{4}I_{13/2}*$	0.0195	0.1173	1.4316	1.112	1.140	1.090	

*Magnetic dipole transition has been substracted

Table 3Calculated Judd-Ofelt intensity parameters $\Omega_2, \Omega_4, \Omega_6$ $(\times 10^{-20} \, \mathrm{cm}^2)$ and the X factors

Sample	Ω_2	Ω_4	Ω_6	$X_{4/6}$	Ref.
0.5% Er-20% Yb-Y ₂ O ₃ ceramic	5.41	0.96	0.64	1.50	This work
1%Er-20%Yb-Y2O3 ceramic	5.55	1.06	0.72	1.46	This work
2%Er-20%Yb-Y2O3 ceramic	4.81	1.23	0.65	1.88	This work
3%Er-20% Yb-Y ₂ O ₃ ceramic	4.30	1.29	0.69	1.88	This work
5% Er-20% Yb-Y ₂ O ₃ ceramic	3.36	1.02	0.69	1.47	This work
Er:Y ₂ O ₃ single crystal	4.59	1.21	0.48	2.52	Ref [17]
0.5% Er:Y2O3 ceramic	5.34	1.63	0.59	2.76	Ref [18]
1% Er:Y2O3 nanocrystals	3.58	2.09	0.41	5.10	Ref [19]
Er:Y2O3 nanocrystals	5.4	1.22	0.92	1.33	Ref [20]

Table 4Calculated radiative lifetime of Er^{3+} in Er, Yb
co-doped x%Er-20%Yb-Y2O3 transparent ceramics

(µs)						
	Manifolds	0.5	1	2	3	5
	${}^{4}I_{13/2}$	8701.83	7698.99	8162.02	8427.50	7833.76
	${}^{4}I_{11/2}$	4871.27	4458.38	4865.17	5203.05	4972.97
	${}^{4}I_{9/2}$	4579.97	4160.66	3681.09	3747.51	4022.98
	${}^{4}F_{9/2}$	572.51	528.74	483.03	490.80	509.18
	${}^{4}S_{3/2}$	531.06	487.00	516.68	520.19	461.66
	${}^{2}G_{9/2}$	203.42	200.47	205.12	216.36	214.48

where *J* and *J*' are the total angular momentum quantum numbers of the initial and final states, respectively; *n* is the refractive index, *h* is the Plank constant and λ is the average wavelength. We didn't list the calculated result of radiative decay rates $A(J \rightarrow J')$ in this paper to save space. The calculated radiative lifetime τ of several main manifolds are listed in Table 4. It can be seen that the calculated radiative lifetime of ⁴I_{13/2} manifolds decreases with increasing Er^{3+} concentration. This suggests that low Er^{3+} concentration might be better for 1.5 µm laser application with Er, Yb co-doped Y₂O₃ transparent ceramics.

3 Conclusions

1) The Judd-Ofelt parameter Ω_2 decreases from 5.41 to 3.36 with Er³⁺ concentration increasing from 0.5 at% to 5 at%. The Ω_4 parameter ranges from 0.96 to 1.29 and the Ω_6 parameter ranges from 0.64 to 0.72.

2) The spectroscopic quality factor $X_{4/6}$ ranges from 1.46 to 1.88, which is smaller than that in the Er single-doped Y_2O_3 single crystals or ceramics, suggesting that Er, Yb co-doped Y_2O_3 transparent ceramics may have better laser performance.

3) With Er^{3+} concentration increasing from 0.5 at% to 5 at%, the theoretical radiative lifetime τ of ${}^{4}\mathrm{I}_{13/2}$ manifold decreases from 8.70 ms to 7.83 ms, suggesting that Er, Yb co-doped Y₂O₃ transparent ceramics with low Er^{3+} concentration may be

better for 1.5 µm laser application.

References

- 1 Stange H, Petermann K, Huber G et al. Applied Physics B Photophysics and Laser Chemistry[J], 1989, 49(3): 269
- 2 Dinerman B J, Moulton P F. Optics Letters[J], 1994, 19(15): 1143
- 3 Aubourg A, Didierjean J, Aubry N *et al. Optics Letters*[J], 2013, 38(6): 938
- 4 Petrov V V, Pestryakov E V, Petrov V A *et al. Laser Physics*[J], 2014, 24(7): 074 014
- 5 Tokurakawa M, Takaichi K, Shirakawa A et al. Applied Physics Letters[J], 2007, 90(7): 071 101
- 6 Ikesue A, Kamata K, Yoshida K. Journal of the American Ceramic Society[J], 1996, 79(2): 359
- 7 Lupei V, Lupei A, Gheorghe C et al. Optics Letters[J], 2009, 34(14): 2141
- 8 Hou X R, Zhou S M, Jia T T et al. Physica B Condensed Matter[J], 2011, 406(20): 3931
- 9 Lu S Z, Yang Q H, Zhang B et al. Optical Materials[J], 2011, 33(5): 746

- 10 Judd B R. Physical Review[J], 1962, 127(3): 750
- 11 Ofelt G S. Journal of Chemical Physics[J], 1962, 37(3): 511
- 12 Ye Y X, Wei L H, Sheng W C et al. Rare Metal Materials and Engineering[J], 2014, 43(10): 2359
- 13 Yin B, Yang Z M, Yang G F et al. Rare Metal Materials and Engineering[J], 2008, 37(6): 1016 (in Chinese)
- 14 Nielson C W, Koster G F. Spectroscopic Coefficients for the pn, dn, and fn Configurations[M]. Cambridge, MA: MIT Press, 1964: 53
- 15 Sardar D K, Gruber J B, Zandi B et al. Journal of Applied Physics[J], 2003, 93(4): 2041
- 16 Kaminskii A A. Crystalline Lasers: Physical Processes and Operating Schemes[M]. New York: CRC Press, 1996: 101
- 17 Weber M J. Physical Review[J], 1968, 171(2): 283
- 18 Brown E E, Hommerich U, Bluiett A et al. Journal of the American Ceramic Society[J], 2014, 97(7): 2105
- 19 Luo W Q, Liao J S, Li R F et al. Physical Chemistry Chemical Physics[J], 2010, 12(13): 3276
- 20 Sardar D K, Nash K L, Yow R M et al. Journal of Applied Physics[J], 2007, 101(11): 113 115

Er, Yb 共掺氧化钇透明陶瓷的 Judd-Ofelt 参数计算

胡 悦,潘 伟

(清华大学 新型陶瓷与精细工艺国家重点实验室, 北京 100084)

摘 要:应用 Judd-Ofelt 方法对真空烧结的 Er, Yb 共掺氧化钇透明陶瓷的光谱学参数进行了研究。通过实验方法测得了不同 Er³⁺掺杂 量的 Er, Yb 共掺氧化钇透明陶瓷的室温吸收光谱和折射率,并结合 Judd-Ofelt 方法计算了不同 Er³⁺掺杂浓度时的光谱学参数。随着 Er³⁺掺杂量的增加, Ω_2 从 5.41 减小至 3.36。 Ω_4 和 Ω_6 的范围分别为 0.96~1.29 和 0.64~0.72。 品质因子 $X_{4/6}$ 的范围为 1.46~1.88,显著优 于 Er 掺杂氧化钇单晶中的品质因子。随着 Er³⁺掺杂量从 0.5 at%增加至 5 at%, ⁴I₁₃₂能级的寿命从 8.7 ms 下降至 7.8 ms。计算结果表明, 低掺杂浓度的 Er, Yb 共掺氧化钇透明陶瓷是一种有潜力的近红外激光材料。

关键词: Judd-Ofelt方法; Y2O3; 透明陶瓷

作者简介: 胡 悦, 女, 1991 年生, 博士生, 清华大学材料科学与工程学院, 北京 100084, 电话: 010-62772859, E-mail: huy13@mails.tsinghua.edu.cn