RE_2O_3 对钢液凝固时异质形核促进效用的晶体学计算

计云 \overline{x}^{1} ,亢 \overline{a}^{1} ,宋艳青¹,瞿 伟²,任慧平²

(1. 内蒙古科技大学, 内蒙古 包头 014010)

(2. 内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室,内蒙古 包头 014010)

摘 要:针对钢中添加稀土镧、铈形成的高熔点夹杂物相 Ce₂O₃和 La₂O₃,利用边-边匹配模型计算其与初生相(δ-Fe 或 γ-Fe)之间的原子匹配情况,从晶体学角度预测其作为钢液凝固时初生相异质形核核心的可能性及效用,并为理解稀土细化钢的凝固组织的作用机理提供新的见解。结果表明,Ce₂O₃和 La₂O₃均可作为初生相 δ-Fe 及 γ-Fe 异质形核的核心;Ce₂O₃和 La₂O₃均可有效细化 δ-Fe 晶粒,但其细化 γ-Fe 晶粒的效果远不如其细化 δ-Fe 晶粒的效果;对于 γ-Fe, La₂O₃的细化效果较 Ce₂O₃ 稍好。

关键词: RE₂O₃; 钢液; 异质形核; 晶体学; 边-边匹配模型 中图法分类号: TG111.4 文献标识码: A 文章编号: 1002-185X(2017)10-2889-06

有关稀土在钢中的应用,自 20 世纪 60 年代以来, 中外学者开展了大量研究工作,目前公认的稀土在钢 中的作用主要包括净化钢液、变质夹杂和微合金 化^[1-5]。近些年来,钢中微量稀土扩大凝固组织中等轴 晶区比例、细化晶粒的作用也受到研究者的高度重 视^[6,7]。对于铸钢、无相变的高合金铁素体或奥氏体钢, 通过提高等轴晶区比例并细化晶粒来提高力学性能异 常重要;另外,有些情况下提高连铸坯中等轴晶区的 比例、实现凝固组织细化对于钢材后续加工及最终性 能都有很大影响^[8-10]。有关稀土改善钢的凝固组织、 细化晶粒的作用机理,学术界普遍认可的观点之一是 高熔点的稀土夹杂物可以作为钢液凝固过程中异质形 核的核心^[11,12]。

在镧系稀土族元素中高丰度的镧与铈在钢中的应 用最为广泛,许多学者对钢中加入镧,铈稀土后夹杂 物的类型、形态、形成顺序及形成条件等进行了热力 学分析和实验研究^[13-16]。结果表明,钢中稀土与氧、 硫形成化合物的先后成顺序为:稀土氧化物——稀土 氧硫化物——稀土硫化物。稀土氧化物主要是 RE₂O₃, 而 REO₂ 在稀土处理钢中不经常出现;稀土氧硫化物 是稀土由脱氧向脱硫过渡的中间产物,其种类、分布 与 O、S 的含量及钢液的过冷度有关;稀土硫化物的 种类与[RE]/[S]的比值相关。

目前评价异质形核核心效用的理论主要有界面能 (或润湿角)理论、点阵错配度理论、静电作用理论 等,其中应用较广的是点阵错配度理论。一般通过计 算基底与形核相之间的二维点阵错配度来描述基底对 异质形核的效用。但梁高飞等[17,18]利用余氏固体与分 子经验电子理论以及程氏改进的 TFD (Thomas-Fermi-Dirac)模型计算发现,即使错配度相同 的质点,其作为异质形核核心的效用也有不同,而且 未观察到点阵错配起主要作用,表明界面共格对应并 不是异质形核有效核心的本质要求。随后,基于静电 作用理论和经验电子理论,建立了凝固系统异质形核 价电子模型,并给出了评价异质形核核心效用的价电 子判据。潘宁等[19,20]对凝固温度下钢液中各种固态化 合物质点与初生相(δ -Fe 和 y-Fe)的二维错配度和基 于经验电子理论的价电子结构分别进行了计算,发现 基于这两种形核理论的计算结果对于评价异质形核核 心的效用出入较大。总之,到目前为止还没有一个更 好的评价异质形核核心效用的理论,因此,对于钢中 各类高熔点稀土夹杂物作为钢液凝固过程中异质形核 核心的可能性及效用,还需要深入细致的研究。

近年来,在铸态轻合金中建立的晶粒细化晶体学 理论模型,即边-边匹配模型^[21],已成功应用于寻找镁 合金、铝合金中有效的异质形核的质点,并成功预测 了质点对异质形核的促进作用^[22,23]。相比传统的点阵 错配度理论,边-边匹配晶体学模型不仅能够判断两个 相之间原子匹配错配度的大小,而且能够根据晶格参 数及两相中原子的位置预测两相之间的位向关系。一

收稿日期: 2016-09-11

基金项目:国家自然科学基金(51261018)

作者简介: 计云萍, 女, 1972年生, 博士, 教授, 内蒙古科技大学材料科学与冶金学院, 内蒙古包头 014010, 电话: 0472-5951572, E-mail: jiyunpingpp@163.com

般认为,两相之间原子匹配的错配度越小、位向关系 越多,这两个相之间的界面能越低。这样,从晶体学 角度看一个相成为另外一个相异质形核核心可能性就 越大。本文将针对钢中添加稀土镧、铈形成的高熔点 夹杂物相 Ce₂O₃和 La₂O₃,利用边-边匹配模型通过晶 体学计算,预测其作为钢液凝固时初生相(δ-Fe 或 γ-Fe)异质形核核心的可能性及效用。

1 边-边匹配模型及其计算步骤

边-边匹配模型(edge-to-edge matching model, E2EM Model)是 Zhang 和 Kelly^[24,25]最早于 1999 年针 对沉淀相变提出的一个几何模型,主要基于以下两个假 设:(1)两相位向关系的选取应使两相界面能最小; (2) 界面能最小的充要条件是在两相界面上达到最大 程度的原子匹配。E2EM 模型并不考虑两相之间保持何 种点阵对应关系,而着重于两相原子在界面上的匹配: 首先是两相中的原子沿着其密排(近密排)晶向的匹配, 即要求两相沿密排(近密排)晶向的原子间距错配度(称 作 Misfit 值) 越小越好, 把该晶向对称为匹配方向, 原 子在匹配方向上可以是直线排列也可以是 Z 字型排列: 另外,要求两相中含有此匹配方向的密排(近密排)晶 面要匹配,即要求其晶面间距的错配度(称做 Mismatch)越小越好,并把这个晶面对称为匹配面。 E2EM 模型描述一个相可能成为另外一个相异质形核 核心的经验判据为 Misfit 值<10%, 且 Mismatch 值 <10%。另外, Misfit 值的影响较 Mismatch 值的影响更 大。E2EM 模型的示意图如图 1^[25]所示,直线型原子排 列和 Z 字型原子排列,如图 2^[24]所示。

图 1 边-边匹配模型的示意图

Fig.1 Schematic of the edge-to-edge matching model

Effective spacing

图 2 两种原子列匹配示意图

Fig.2 Schematic of two types of atom row matching

E2EM 模型的求解步骤如下:(1)选择可能的匹配原子列(两相的密排原子列或近密排原子列,一般为低指数晶向),沿着匹配原子列方向的原子间距错配度<10%;(2)选择可能的匹配晶面(两相的密排晶面或近密排晶面,一般为低指数晶面),面间距错配度<10%;(3)遵循匹配原子列必须在匹配晶面上的原则,对上述两步中可能的原子列对和晶面对进行组合,得到所有可能的粗略位向关系。此外,还可以采用 Δg 平行准则^[26]对粗略的位向关系进行精确计算。E2EM 模型求解中最关键的计算步骤是以下两步:(1)密排 原子列与密排面的确定;(2)两相密排列上原子间距 错配度和两相密排面面间距错配度的计算。计算过程 中还需要注意的是,直线型原子列与直线型原子列匹配。

原子间距错配度(Misfit)和面间距错配度 (Mismatch)计算公式如下:

$$f_{\mathbf{r}} = \frac{|r_{\mathbf{M}} - r_{\mathbf{P}}|}{r_{\mathbf{D}}} \tag{1}$$

其中: f_r为原子间距错配度; r_M为基体沿密排原子列的原子间距; r_P为异质形核质点相沿密排原子列的原子间距。

$$f_{\rm d} = \frac{|d_{\rm M} - d_{\rm P}|}{d_{\rm P}} \tag{2}$$

其中: f_d为面间距错配度; d_M为基体中密排晶面的面间距; d_P为异质形核质点相的密排晶面的面间距。

2 基于边-边匹配模型的晶体学计算与分析

2.1 RE₂O₃与初生相的晶体学数据

根据含碳量的不同,钢液凝固时的初生相可以是 铁素体相也可以是奥氏体相。本研究针对 δ-Fe 和 γ-Fe 两种形核相,δ-Fe、γ-Fe 与 Ce₂O₃及 La₂O₃的晶体学参 数与原子占位如表 1 所示。这些晶体学参数和晶胞内 每个原子的位置用于计算确定各个相的密排列(晶向) 或近密排列(晶向)、密排晶面或近密排晶面。

2.2 计算结果与分析

根据 E2EM 模型计算的钢液凝固时的初生相 (δ-Fe 或 γ-Fe)与 Ce₂O₃及 La₂O₃的密排列(晶向) 或近密排列(晶向)、密排面或近密排面如表 2 所示。 可见,密排列有直线型(SS)的,也有 Z(ZZ)字型 的,还有准直线(PS)型的。其中,原子间距越小的 晶向,其密排程度越大;面间距越大的晶面,其密排 程度越大。

为了评价初生相与 RE₂O₃之间晶体学上原子的匹 配情况,根据确定的各个相的密排晶向和密排晶面, 按照式(1)和式(2)分别计算了初生相和 RE₂O₃之 间沿密排晶向的原子间距错配度和密排面晶面间距错 配度。表 3 所示为 δ -Fe 与 Ce₂O₃之间沿密排晶向的原 子间距错配度和密排面晶面间距错配度。可见,所有 的 Misfit 值和 Mismatch 值均小于 10%。根据 E2EM 模型的要求,两相之间可能的位向关系的构建需要满 足密排晶向必须位于密排晶面上(满足晶带定理即可 判断),且考虑到密排列的匹配时需要直线型原子列与 直线型原子列匹配,Z字型原子列与Z字型原子列匹 配,所以预测的 δ-Fe 与 Ce₂O₃之间粗略位向关系有 4 个:即 OR 1-A、OR 1-B、OR 1-C 和 OR 1-D。

 δ -Fe 与 La₂O₃之间原子匹配错配度的计算结果如 表 4 所示。可见,所有 Misfit 值和 Mismatch 值均小于

	表 1	初生相与 Ce ₂ O ₃	及 La ₂ O ₃ 的晶体结	构、空间群、	晶格参数及原子	占位	
Table 1	Crystal struct	ture, space group.	lattice parameters	and atomic r	positions of δ -Fe.	v-Fe. Ce ₂ O ₃	and La ₂ O ₃

Phase	Crystal	Space group	Lattice	Atomic position							
Thase	structure	Space group	/nm	Atom	Mult.	Wyck.	x	у	z	- Ker.	
δ -Fe	bcc	Im 3m	a=0.29315	Fe	2	а	0	0	0	[27]	
γ-Fe	fcc	$Fm\overline{3}m$	a=0.36544	Fe	4	а	0	0	0	[28]	
	Hexagonal		<i>a</i> =0.3891 <i>c</i> =0.6055	Ce	2	d	0.3333	0.6667	0.2454		
Ce_2O_3		P3m1		O1	2	d	0.3333	0.6667	0.6471	[29]	
				O2	1	а	0	0	0		
			0 4020	La	2	d	0.3333	0.6667	0.2464		
La_2O_3	Hexagonal	P3m1	a=0.4039	O1	2	d	0.3333	0.6667	0.6453	[30]	
	C C		<i>c</i> =0.6403	O2	1	а	0	0	0		

表 2 *δ*-Fe、γ-Fe、Ce₂O₃及 La₂O₃的密排列(近密排列)和密排面(近密排面) Table 2 Closed-nacked (CP) rows and closed-nacked (CP) planes of *δ*-Fe v-Fe Ce₂O₃ and La₂O₃

1	Tuble 2 Closed packed (CF) Tows and closed packed (CF) planes of 0-10, 7-10, 00203 and Eu203										
Phase	CP rows	Interatomic spacing/nm	Туре	CP planes	Interplanar spacing/nm						
	< 113 >	0.243	ZZ	{011}	0.207						
δ -Fe	<111 >	0.254	SS	{002}	0.147						
	< 100>	0.293	SS	{121}	0.120						
				{111}	0.211						
Ee	< 211>	0.224	ZZ	{020}	0.183						
ү-ге	< 101 >	0.258	SS	{022}	0.129						
				{131}	0.110						
				$\{11\overline{2}0\}$	0.195						
C • O	< 5413 >	0.239	PS	$\{01\overline{1}2\}$	0.225						
Ce_2O_3	< 1101>	0.302	SS	$\{20\overline{2}2\}$	0.147						
				$\{01\overline{1}1\}$	0.294						
				$\{11\overline{2}0\}$	0.202						
	< 5413>	0.249	PS	$\{01\overline{1}2\}$	0.236						
La_2O_3	< 1101>	0.316	PS	$\{20\overline{2}2\}$	0.153						
				$\{01\overline{1}1\}$	0.307						

表 3 采用边-边匹配模型对 δ-Fe 和 Ce₂O₃之间原子匹配错配度的计算结果

Table 3 Calculated r	nisfit and misma	itch between δ -Fe a	nd Ce ₂ O ₃ based on the E2EN	1 model
Matching rows	Misfit, fr/%	Matching type	Matching planes	Mismatch, fd/%
$<11\overline{3}>_{\delta-{\rm Fe}} //<5\overline{4}\overline{1}3>_{{\rm Ce}_2{\rm O}_3}$	1.74	ZZ-PS	$\{002\}_{\delta-\text{Fe}} // \{20\overline{2}2\}_{\text{Ce}_2\text{O}_3}$	0.46
$<100>_{\delta-{ m Fe}}$ // $<\overline{1}101>_{{ m Ce}_2{ m O}_3}$	2.96	SS-SS	$\{011\}_{\delta-\mathrm{Fe}} // \{11\overline{2}0\}_{\mathrm{Ce}_{2}\mathrm{O}_{3}}$	6.54
$<11\overline{1}>_{\delta-{\rm Fe}} //<5\overline{4}\overline{1}3>_{{\rm Ce}_2{\rm O}_3}$	6.26	SS-PS	$\{011\}_{\delta-\text{Fe}} // \{01\overline{1}2\}_{\text{Ce}_2\text{O}_3}$	7.99

Note: //represents matching

OR 1-A: $[100]_{\delta-\text{Fe}} // [\bar{1}101]_{\text{Ce}_2\text{O}_3} \& (0\bar{2}0)_{\delta-\text{Fe}} // (\bar{2}02\bar{2})_{\text{Ce}_2\text{O}_3};$

 $\text{OR 1-B: } \quad \text{[100]}_{\delta\text{-Fe}} \, /\!/ \, \, [\bar{1}101]_{Ce_2O_3} \, \& \, (0\bar{1}\bar{1}\bar{1})_{\delta\text{-Fe}} \, /\!/ \, (11\bar{2}0)_{Ce_2O_3} \, ; \\$

 $\text{OR 1-C: } [100]_{\delta\text{-Fe}} \, /\!/ \, [\bar{1}101]_{Ce_2O_3} \, \& \, (0\bar{1}\bar{1})_{\delta\text{-Fe}} \, /\!/ \, (\bar{1}10\bar{2})_{Ce_2O_3} \, ; \\$

 $\text{OR 1-D:} \quad \text{[111]}_{\delta\text{-Fe}} \, /\!/ \, \text{[5413]}_{Ce_2O_3} \, \& \, \text{(101)}_{\delta\text{-Fe}} \, /\!/ \, \text{(1012)}_{Ce_2O_3} \, \circ \, \text{(101)}_{\delta\text{-Fe}} \, /\!/ \, \text{(1012)}_{Ce_2O_3} \, \circ \, \text{(101)}_{\delta\text{-Fe}} \, /\!/ \, \text{(1012)}_{Ce_2O_3} \, \circ \, \text{(1012)}_{\delta\text{-Fe}} \, /\!/ \, \text{(1012)}_{\delta\text{-Fe}} \, /\, \ \ \text{(1012)}_{\delta\text{-Fe}}$

表 4 采用边-边匹配模型对 δ -Fe 和 La₂O₃之间原子匹配错配度的计算结果

I	ab	le 4	4	Ca	al	cul	lat	ed	mi	sfit	and	m	ism	atc	h t	bet	we	en	δ-Ι	e:	and	L	$a_2($) ₃	basec	l on	the	ł	£2EM	m	ode	I

Matching rows	Misfit, fr/%	Matching type	Matching planes	Mismatch, f _d /%
$<11\overline{1}>_{\delta-\mathrm{Fe}}//<5\overline{4}\overline{1}3>_{\mathrm{La}_{2}\mathrm{O}_{3}}$	1.90	SS-PS	$\{011\}_{\delta-Fe} // \{11\overline{2}0\}_{La_2O_3}$	2.64
$<11\overline{3}>_{\delta-\mathrm{Fe}}//<5\overline{4}\overline{1}3>_{\mathrm{La}_{2}\mathrm{O}_{3}}$	2.44	ZZ-PS	$\{002\}_{\delta-\text{Fe}} // \{20\overline{2}2\}_{\text{La}_2\text{O}_3}$	4.50
$<100>_{\delta-{\rm Fe}}$ // $<\overline{1}101>_{{\rm La}_2{\rm O}_3}$	7.27	SS-PS		

Note: //represents matching

OR 2-A: $[11\overline{1}]_{\delta-\text{Fe}} // [5\overline{4}\overline{1}3]_{\text{La}_2\text{O}_3} \& (101)_{\delta-\text{Fe}} // (\overline{1}012)_{\text{La}_2\text{O}_3}$ OR 2-B: $[100]_{\delta-\text{Fe}} // [\overline{1}101]_{\text{La},O_3} \& (0\overline{1}\overline{1})_{\delta-\text{Fe}} // (11\overline{2}0)_{\text{La},O_3}$. OR 2-C: $[100]_{\delta-\text{Fe}} // [\bar{1}101]_{\text{La}_2\text{O}_3} \& (0\bar{2}0)_{\delta-\text{Fe}} // (\bar{2}02\bar{2})_{\text{La}_3\text{O}_3}$

10%, 计算得到 δ -Fe 与 La₂O₃之间粗略位向关系有 3 个:即 OR 2-A、OR 2-B 和 OR 2-C。

y-Fe 与 Ce₂O₃之间原子匹配错配度的计算结果如 表 5 所示。可见, 所有的 Misfit 值和 Mismatch 值均小 于 10%, 计算得到 δ -Fe 与 La₂O₃之间粗略位向关系只 有1个:即OR3。

γ-Fe 与 La₂O₃之间原子匹配错配度的计算结果如 表 6 所示。可见, 所有的 Misfit 值和 Mismatch 值均小 于 10 %, 计算得到 δ -Fe 与 La₂O₃之间粗略位向关系只 有1个:即OR4。

根据E2EM的经验判据:Misfit值<10%且Mismatch 值<10%,计算结果表明,Ce2O3和La2O3均可能作为初 生相 δ -Fe 及 y-Fe 异质形核的核心。文献[19]报道的基 于点阵错配度理论的二维错配度计算表明, Ce₂O₃和 La₂O₃均可作为初生相 δ -Fe 异质形核的核心,但不能作 为 y-Fe 异质形核的核心。本文利用 E2EM 模型进行晶 体学计算的结果与文献[20]报道的基于静电作用理论 和经验电子理论的价电子结构计算结果一致。

根据 E2EM 模型,沿着匹配原子列小的 Misfit 值 及匹配晶面间低的 Mismatch 值能够降低凝固初生相 和质点之间的界面能,因而结晶时这两个相之间结合 的可能性就大,质点作为初生相异质形核核心的可能 性就大,其细化凝固组织的效用就大。针对初生相 δ-Fe, δ-Fe 与 Ce₂O₃之间位向关系中原子匹配错配度 最小的位向 [100]_{δ-Fe} // [Ī101]_{Ce,O3} 和 (020)_{δ-Fe} // (2022)_{Ce,O3}中: [100]_{δ-Fe} // [1101]_{Ce,O2} 的 Misfit 值为 2.96%, $(0\overline{2}0)_{\delta-\text{Fe}} // (\overline{2}02\overline{2})_{\text{Ce},0_3}$ 的 Mismatch 值为 0.46%; δ-Fe 与 La₂O₃间位向关系中原子匹配错配度最小的位 向 $[111]_{\delta-\text{Fe}}$ // $[5\overline{4}\overline{1}3]_{\text{La}_2O_3}$ & $(101)_{\delta-\text{Fe}}$ // $(\overline{1}012)_{\text{La}_2O_3}$ 中: [111]_{δ-Fe} // // [5413]_{La,O3} 的 Misfit 值为 1.90%, (101)_{δ-Fe} // (1012)_{La,O3}的 Mismatch 值为 2.64%, 可见, Ce₂O₃ 和 La₂O₃均可有效细化 δ -Fe 晶粒。针对初生相 γ-Fe,

_										
	Table 5	Calculate	d misfit and	l mismato	ch between	γ-Fe and	Ce ₂ O ₃ bas	ed on the	E2EM mod	el
	表	表5 采用	边-边匹配	模型对γ-]	Fe 和 Ce ₂ C	3之间原-	子匹配错配	度的计算	结果	

Matching rows	Misfit, <i>f</i> _r /%	Matching type	Matching planes	Mismatch, f _d /%
$<2\overline{1}1>_{\gamma-{\rm Fe}}$ // $<5\overline{4}\overline{1}3>_{{\rm Ce}_2{\rm O}_3}$	6.33	ZZ-PS	$\{020\}_{\gamma} - Fe // \{11\overline{2}0\}_{Ce_2O_3}$	6.08
$<10\overline{1}>_{\gamma-{ m Fe}}//<5\overline{4}\overline{1}3>_{{ m Ce}_2{ m O}_3}$	8.16	SS-PS	$\{111\}_{\gamma}$ -Fe // $\{01\overline{1}2\}_{Ce_2O_3}$	6.35
			$\{111\}_{\gamma-Fe} // \{11\overline{2}0\}_{Ce_2O_3}$	8.45

Note: //represents matching

OR 3: $[10\overline{1}]_{\gamma-\text{Fe}} // [5\overline{4}\overline{1}3]_{\text{Ce},O_3} \& (1\overline{1}1)_{\gamma-\text{Fe}} // (\overline{1}012)_{\text{Ce},O_3}$

Table 6 Calculated misfit and mismatch between γ-Fe and La ₂ O ₃ based on the E2EM model								
Matching rows	Misfit, <i>f</i> _r /%	Matching type	Matching planes	Mismatch, f _d /%				
$<10\overline{1}>_{\gamma-{\rm Fe}}//<5\overline{4}\overline{1}3>_{{\rm La}_2{\rm O}_3}$	3.71	SS-PS	$\{111\}_{\gamma-\text{Fe}} // \{11\overline{2}0\}_{\text{La}_2\text{O}_3}$	4.47				
			$\{020\}_{\gamma-\text{Fe}}$ // $\{11\overline{2}0\}_{\text{La}_2\text{O}_3}$	9.52				

ξ6	采用边-边匹配模型对	γ -Fe和La ₂ O ₃ 之间原子匹配错配度的	计算结果
----	------------	--	------

Note: //represents matching

OR 4: $[10\overline{1}]_{\gamma-\text{Fe}} // [5\overline{4}\overline{1}3]_{\text{La}_2\text{O}_3} \& (1\overline{1}1)_{\gamma-\text{Fe}} // (\overline{1}012)_{\text{La}_2\text{O}_3}$

比较表 5 和表 6,发现其与 Ce2O3及 La2O3之间的位向 关系均为 [10ī]_{γ-Fe} // [54ī3]_{RE,O3} 和 (1ī1)_{γ-Fe} // (1012)_{RE,O3},但[101]_{γ-Fe}//[5413]_{Ce,O2}的 Misfit 值为 8.61%, (111)_{γ-Fe} // (1012)_{Ce₂O₃}的 Mismatch 值为 6.35%, [101]_{γ-Fe} // [5413]_{La,O3} 的 Misfit 值为 3.71%, ⁽¹¹¹⁾_{γ-Fe} // (1012)_{LaO}的 Mismatch 值为 4.47%。所以, 计算结 果表明,La₂O₃作为钢液凝固时初生相 γ-Fe 的异质形 核核心的可能性及效用较 Ce₂O₃要大,即,对于 γ-Fe, La₂O₃的细化作用较 Ce₂O₃ 稍好。此外,从计算结果还 可以看出,除了对 δ -Fe 与 Ce₂O₃及 La₂O₃之间原子匹 配错配度(Misfit 值和 Mismatch 值)和 γ-Fe 与 Ce₂O₃ 及 La₂O₃之间原子匹配错配度(Misfit 值和 Mismatch 值)进行比较之外, δ -Fe 与 Ce₂O₃及 La₂O₃之间粗略 的位向关系较 y-Fe 与 Ce₂O₃及 La₂O₃之间粗略的位向 关系多,也可说明 δ -Fe 与 Ce₂O₃及 La₂O₃之间的界面 能较 γ -Fe 与 Ce₂O₃及 La₂O₃之间的界面能低,所以, Ce_2O_3 和 La₂O₃作为钢液凝固时 δ -Fe 初生相异质形核 核心的可能性较其作为 y-Fe 初生相异质形核核心的可 能性要大,即, Ce_2O_3 和 La_2O_3 细化 γ -Fe 晶粒的效果 远不如细化 δ -Fe 晶粒的效果。但相关预测结果均需要 实验来验证,目前作者正在开展相关工作,以期通过 EBSD 菊池线对晶体学位向关系的表征对计算结果进 行实验验证。

3 结 论

1)利用边-边匹配模型对 Ce_2O_3 和 La_2O_3 作为钢 液凝固时初生相(δ -Fe ∂_{γ} -Fe)异质形核核心的可能 性及效用进行了晶体学计算,结果表明 Ce_2O_3 和 La_2O_3 均可作为初生相 δ -Fe ∂_{γ} -Fe 异质形核的核心。

2) 对于初生相 δ -Fe, Ce₂O₃ 和 La₂O₃均可有效细 化 δ -Fe 的晶粒。

3) 对于初生相 γ -Fe, Ce₂O₃ 和 La₂O₃ 的细化效果 远不如其对 δ -Fe 的细化效果,但 La₂O₃ 的细化效果较 Ce₂O₃ 稍好。

致 谢:感谢澳大利亚昆士兰大学 Mingxing Zhang 教授在边-边匹配晶体学模型计算方面给予的指导与帮助。

参考文献 References

- Smirnov L A, Rovnushkin V A, Oryshchenko A S et al. Metallurgist[J], 2016, 59 (11-12): 1053
- [2] Jeon Soon-Hyeok, Hur Do Haeng, Kim Hye-Jin et al. Corrosion Science[J], 2015, 90(5): 313
- [3] Mohammad Ali Hamidzadeh, Mahmood Meratian, Ahmad Saatchi. *Materials Science & Engineering A*[J], 2014, 571: 193

- [4] Kim S T, Jeon S H, Lee I S et al. Corrosion Science [J], 2010, 52: 1897
- [5] Wang Haiyan(王海燕), Gao Xueyun(高雪云), Ren Huiping(任慧平) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2014, 43 (11): 2739
- [6] Li Haoze, Liu Haitao, Wang Xianglong et al. Materials Letters[J], 2016, 165: 5
- [7] Wang Longmei(王龙妹), Tan Qingyuan(谭清元), Li Na(李 娜) et al. Journal of the Chinese Rare Earth Society(中国稀土学 报) [J], 2014, 32(5): 513
- [8] Lan P, Song L, Du C et al. Materials Science and Technology[J], 2014, 30(11): 1297
- [9] Li Yunfeng, Wen Guanghua, Tang Ping et al. Journal of Iron and Steel Research International[J], 2014, 21(8): 737
- [10] Chen Guojun(陈国军), Zhang Yongjie(张永杰), Wang Engang(王恩刚) et al. Metallic Functional Materials (金属 功能材料)[J], 2014, 21(6): 29
- [11] Guo M, Suito H. ISIJ International[J], 1999, 39(7): 722
- [12] Chen Xiang, Li Yanxiang, Zhang Huiming. Journal of Materials Science [J], 2011, 46(4): 957
- [13] Smirnov L A, Rovnushkin V A, Oryshchenko A S et al. Metallurgist[J], 2016, 60(1-2): 38
- [14] Zhu Yingguang(朱莹光). Proceedings 9th China Steel Conference (第九届中国钢铁年会论文集)[C]. Beijing: Metallurgical Industry Press, 2013: 1
- [15] Li Yandong(李 言 栋), Liu Chengjun(刘承军), Li Chunlong(李春龙) et al. Journal of Chongqing University (重庆大学学报)[J], 2015, 38(10): 112
- [16] Song M M, Song B, Xin W B et al. Ironmaking and Steelmaking[J], 2015, 42(8): 594
- [17] Liang Gaofei(梁高飞), Song Changjiang(宋长江), Liu Xiangyang(刘向阳) et al. Journal of Shanghai Jiaotong University (上海交通大学学报)[J], 2005, 39(39): 1558
- [18] Liang Gaofei(梁高飞), Xu Zhenmin(许振明), Zhai Dike(瞿 迪柯) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2005, 34(10): 1073
- [19] Pan Ning(潘 宁), Song Bo(宋 波), Zhai Qijie(翟启杰) et al. Journal of University of Science and Technology Beijing (北 京科技大学学报)[J], 2010, 32(2): 179
- [20] Pan Ning(潘 宁), Song Bo(宋 波), Zhai Qijie(翟启杰). Acta Metallurgica Sinica (金属学报)[J], 2009, 45(12): 1441
- [21] Zhang M X, Kelly P, Easton M et al. Acta Materialia[J], 2005, 53(5): 1427
- [22] Qiu D, Zhang M X, Taylor J A et al. Acta Materialia[J], 2009, 57(10): 3052

- [23] Wang Feng, Qiu Dong, Liu Zhilin et al. Journal of Applied Crystallography[J], 2014, 47(2): 770
- [24] Zhang M X, Kelly P M. Scripta Materialia[J], 2005, 52(10): 963
- [25] Kelly P M, Zhang M X. Metallurgical and Materials Transactions A[J], 2006, 37(3): 833
- [26] Zhang W Z, Purdy G R. Philosophical Magazine A[J], 1993, 68: 279
- [27] Kohlhaas R, Duenner P, Schmitz-Pranghe N. Zeitschrift Fuer Angewandte Physik[J], 1967, 23(4): 245
- [28] Straumanis M E, Kim D C. Transactions of the Metallurgical Society of AIME[J], 1965, 233: 1519
- [29] Baernighausen H, Schiller G. Journal of the Less-Common Metals[J], 1985, 110: 385
- [30] Aldebert P, Traverse J P. Materials Research Bulletin[J], 1979, 14: 303

Crystallographic Calculation about Heterogeneous Nucleation Potency of RE₂O₃ in Liquid Steel

Ji Yunping¹, Kang Lei¹, Song Yanqing¹, Qu Wei², Ren Huiping²

(1. Inner Mongolia University of Science and Technology, Baotou 014010, China)

(2. Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Baotou 014010, China)

Abstract: Edge-to-Edge Matching Model was used to calculate the atomic matching between the RE inclusions, namely Ce₂O₃ and La₂O₃, and the primary phase (both δ -Fe and γ -Fe), in order to predict the possibility and the potency of RE₂O₃ as the heterogeneous nucleation sites in liquid steel. The research also provides new insight into the understanding of the grain refinement mechanism of rare earth in the solidification of steels from the point of view of crystallography. The results show that both Ce₂O₃ and La₂O₃ are potential nucleant for heterogeneous nucleation of both δ -Fe and γ -Fe primary phases during solidification of steels. But, the grain refining effect of Ce₂O₃ and La₂O₃ for δ -Fe is better than that for γ -Fe. Moreover, for γ -Fe, the La₂O₃ is more efficient than Ce₂O₃.

Key words: RE₂O₃; liquid steel; heterogeneous nucleation; crystallography; edge-to-edge matching model

Corresponding author: Ji Yunping, Ph. D., Professor, School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, P. R. China, Tel: 0086-472-5951572, E-mail: jiyunpingpp@163.com