超声辅助共沉淀法制备富锂锰基正极材料

徐金鹏,江靖雯,黄海富,黎光旭,梁先庆,周文政,郭 进,黄 丹

(广西大学 物理科学与工程技术学院 广西新型电池材料工程技术研究中心

广西有色金属及特色材料加工重点实验室, 广西 南宁 530004)

摘 要:采用超声辅助共沉淀法制备了富锂锰基正极电极材料,研究了不同的超声时间对材料形貌、结构和电化学性能的影响。研究发现,超声辅助能够使材料颗粒更加均匀,结构更合理,有利于材料电化学性能的提升。当合成前躯体材料超声时间为8h时,复合材料的放电比容量最好,在0.1C的初始放电比容量为327.8mAh·g⁻¹,高于未超声的复合材料的265.2mAh·g⁻¹,1C下循环50次后放电容量为181.6mAh·g⁻¹,保持率为84.8%。通过循环伏安法测试和电化学交流阻抗测试,发现超声后的复合材料还原氧化峰电流更大,电荷转移阻抗更小,具有较好的倍率性能。

关键词: 锂离子电池; Li[Li_{0.144}Ni_{0.136}Co_{0.136}Mn_{0.544}]O₂; 超声波辅助共沉淀

中图法分类号: TM912.9 文献标识码: A 文章编号: 1002-185X(2019)10-3359-07

能源问题已成为当今备受关注的社会问题。传统的 石化能源、生物质能源的燃烧严重污染着生态环境,可 再生能源如太阳能、风能、水能、地热能等受到地域空 间的限制,需要储能设备来解决这些问题^[1,2]。对于应用 广泛、简便高效、技术成熟的电化学储能器件, 锂离子 电池具有较高的能量密度和较长的循环寿命等优越性能 而广泛应用在便携式电子设备,电动汽车,智能电网等 方面[3-5]。提高整体锂离子电池比容量的关键在于正极材 料,目前商业化的正极材料LiCoO2、LiMn2O4、LiFePO4、 Li(Ni_xCo_vMn_{1-x-v})O₂(NCM)等比容量均低于 200 mAh·g⁻¹, 而富锂锰基正极材料,结构式表示为 xLi₂MnO₃·(1-x)LiMO₂ (0<x<1, M 为过渡金属)或 Li[Li_{(1-x)/3}Mn_{(2-x)/3}Ni_{x/3}Co_{x/3}]O₂,放电比容量高于 250 mAh·g⁻¹, 工作电压约为 3.7 V, 且主体元素为 Mn, 与 NCM 三元材料相比价格相对低廉,具有良好的市场前 景^[6-8]。但是富锂材料存在首次不可逆容量高、倍率性能 差、高电压下电极/电解液表面不稳定、Li₂MnO₃较低的 导电性、循环中结构由层状转变为尖晶石状等问题,限 制了富锂材料的工业化生产和应用。针对以上缺陷,主 要是通过调节材料的界面结构和体相结构来提高其性 能,例如表面包覆改性、掺杂、成分结构优化、与其他 材料复合等^[9-11]。

根据文献报道,富锂材料的制备主要有以下几种方法:共沉淀法^[12]、溶胶凝胶法^[13]、水热法^[14]、冷冻干燥

法[15]、燃烧法[16]等。其中共沉淀法和溶胶凝胶法制备的 富锂材料比容量可达到 300 mAh·g⁻¹, 但是材料的制备条 件较为严格,制备出的材料容易出现形貌、元素成分不 均匀等问题而影响材料的整体性能。超声波辅助技术可 用于有效地合成微纳米材料。Li等[17]在反应釜中增加棒 状超声发生器,在溶液中沿着轴向产生超声波,制备的 富锂材料 Li1.3Ni0.21Mn0.64O2+d 有较好的结构和形貌,而且 提高了锂离子的迁移速率,改善了电池的性能。Zheng 等[18]利用超声波清洁器发生的超声波合成了氢氧根前 驱体,制得的镍钴锰三元材料具有较好的层状结构和低 的离子混排,从而提升了其电化学性能。超声波在溶液 中震荡可形成特殊的声学空位现象,产生无数的小气泡 并瞬间破裂,对材料的形成产生过高压轰击效果,可减 小颗粒尺寸, 使反应更加充分均匀, 从而形成均一的颗 粒。较小的颗粒尺寸缩短了 Li⁺的迁移路径^[19], 合理的 晶格常数也有利于 Li⁺的转移^[20]。因此通过超声辅助共 沉淀法可有效改善颗粒的尺寸、层状结构、形貌等,进 而提高锂离子迁移速率,提升电池性能。

本实验以硫酸盐为原料,利用超声辅助共沉淀法制 备富锂锰基碳酸根前驱体,通过多段烧结制得富锂材料 Li[Li_{0.144}Ni_{0.136}Co_{0.136}Mn_{0.544}]O₂。通过改变合成过程中超 声时间长短,重点研究了不同超声时长对富锂材料的尺 寸、形貌、晶体结构的影响,同时测试了电池的电化学 性能,研究了超声辅助对电池的容量、倍率、循环伏安

收稿日期: 2018-10-18

基金项目: 国家自然科学基金(61664003,51571065); 广西科技重大专项(桂科 AA17204063)

作者简介:徐金鹏,男,1991年生,硕士,广西大学物理科学与工程技术学院,广西南宁 530004,电话:0771-3232666, E-mail: physics_xu@ 163.com

和交流阻抗等方面的影响。

1 实 验

富锂材料 Li[Li_{0.144}Ni_{0.136}Co_{0.136}Mn_{0.544}]O₂ 通过前躯 体(Ni_{1/6}Co_{1/6}Mn_{4/6})CO₃ 来制备^[21],流程如图 1 所示。称 取一定化学计量的 NiSO₄·6H₂O、CoSO₄·7H₂O、 MnSO₄·H₂O 配成 2 mol/L 的水溶液,配制 2 mol/L 的 Na₂CO₃ 水溶液。将反应釜固定于超声清洗器中,工作频 率为 40 kHz,超声时间设为 12、8、4、0 h,水温 60 ℃, 同时将配好的两种溶液分别泵入到反应釜中,滴加适量 氨水,pH 值控制在 8.0,机械搅拌 1000 r/min,持续搅 拌 12 h,之后静置 12 h,抽滤,真空 80 ℃干燥 12 h,得 到 (Ni_{1/6}Co_{1/6}Mn_{4/6}) CO₃ 前驱体。所得前驱体与一定比 例的 Li₂CO₃研磨均匀松装放入坩埚,马弗炉中空气气氛 煅烧。根据热重/差热分析,先在 380 ℃保温 1 h,500 ℃ 保温 4 h,然后在 780 ℃保温 2 h,在 900 ℃保温 12 h, 升温速率为 3 ℃/min,随炉冷却至室温。样品根据超声 时间不同依次标记为 LR-U12、LR-U8、LR-U4、LR。

使用日本 Rigaku-mini Flex600 型 X 射线衍射仪(Cu Kα 辐射)对样品物相结构进行分析,扫描速率为 5°/min,步长为 0.02°,范围为 2*θ*=10°~90°,电压为 40 kV,电流为 200 mA。材料的形貌用扫描电子显微镜 SEM (JEOL、JSM-6510A)进行观测。使用 Malvern Mastersizer 3000 激光 粒度仪利用湿法进行比表面积、粒度分析,先将样品在真空干燥箱中 120 ℃下干燥 12 h,然后超声波分散在纯净水中,设置折射率 1.65,转速 2400 r/min。

将富锂材料、聚偏氟乙烯 (PVDF)、乙炔黑 (Super P) 按质量比 8:1:1 混合研磨 30 min, 滴加适量 N-甲基-2-吡咯烷酮 (NMP) 溶液, 室温磁力搅拌 4 h。之后, 涂 覆在铝箔上 (厚度 120 μm), 真空中 120 ℃干燥 12 h, 经辊压载成 Φ=14 mm 的正极片, 负极为金属锂片, 电解 液为 1 mol/L LiPF₆ 的 EC+EMC(体积比 EC/EMC=1:1)溶

图 1 材料制备流程示意图 Fig.1 Schematic diagram of the sample preparation

液,隔膜为 Celgard 2400,在氩气氛围的手套箱中组装成 CR2032 型扣式半电池。用深圳新威公司的 CT-3008 型电池测试仪进行静态电流循环和倍率测试,充放电压为 2~4.8 V。用 Gamry 公司的 Reference 3000 型电化学工作站进行循环伏安(CV)和交流阻抗(EIS)测试,CV 电压扫描范围为 2.0~5.0 V,扫描速率为 0.1 mV/s,EIS 的测试频率范围为 100 kHz~0.01 Hz,振幅为 10 mV。

2 结果与讨论

2.1 结构和形貌分析

图 2 为样品的 XRD 图谱。4 个样品有相似的图谱。 所制备的材料均具有典型的 *a*-NaFeO₂ 层状构型的特征 峰,属于六方晶系,R-3m 空间群。在 20°~23°附近出现 了一组较小的衍射峰(020)/(Ī11)(图 2b)。Liu 等^[22]认为此 为层状 Li₂MnO₃的特征峰,是过渡金属层 Li、Mn 的超 晶格有序排列导致的。其中超声时长为 4 和 8 h 的材料, 其(020)/(Ī11)峰的强度较高,且杂质峰比较少,说明具 有较好的富锂锰基层状结构。一般认为^[23,24],*I*₍₀₀₃₎与*I*₍₁₀₄₎ 的峰强比大于 1.2 时,说明镍、锂离子混排较少。由于 Ni²⁺和 Li⁺离子半径相近,容易导致镍锂混排,使混到镍 位的锂在充放电循环中难以脱出,影响材料的循环性能 和放电比容量。从表 1 样品的晶胞参数及峰强比值中可

以看出, *I*₍₀₀₃/*I*₍₁₀₄)的值较高(>1.33),可知4种富锂材料都有较好的层状结构,镍锂混排较少。图2中(006)/(012)和(018)/(110)衍射峰分裂明显,表明合成的富锂正极材料都具有良好的结晶性和有序的层状结构。

晶胞参数 c/a 值大于 4.9,表明层状材料有较好的六 方晶系特征^[25],4 种样品的 c/a 值均大于 4.9,样品层状 结构较好。对于平均晶粒尺寸,随着超声时间的增加而 变小,LR-U12 最小为 68.6(6) nm,而未超声样品的平均 晶粒尺寸较大,为 84.5(10) nm,较小的粒度可以增加材 料的比表面积,使其与电解液充分接触。

图 3 为样品的扫描电镜图。图 3a~3d 为前躯体的形 貌, 均为 2~5 µm 的类球形颗粒, 且随超声时间增加粒 度有减小的趋势。图 3e~3h 为富锂材料的形貌,是由一 次颗粒组成的 10 μm 左右的团聚颗粒。未超声的材料一 次颗粒为类球形,但是随着超声时间的增加,一次颗粒 逐渐变为类似大米粒状的短棒形颗粒,超声时间为12h 的样品一次颗粒为 0.5 μm×1.5 μm 的短棒,并且超声时 间越长,成品一次颗粒的长/宽比越大。同时,随着超声 时间的增加,虽然制备的富锂材料前躯体的颗粒更加均 匀,颗粒更小,但成品有少部分为米粒状小短棒团聚成 的不规则颗粒。颗粒尺寸的降低可以缩短离子在电解液 中的传输路径, 增大电化学反应面积, 提高电子输运特 性^[19]。但是过小的颗粒在电解液中的溶解会快些,不利 于循环稳定性,这也可能是样品 LR-U12 性能有所下降 的原因。同时,通过对样品进行元素分布和元素含量的 测试,得出超声和未超声制备的前躯体其过渡金属元素比 例均符合设计要求。

2.2 粒度分析

为进一步探究超声作用和材料颗粒大小的关系,对 样品进行粒度和比表面积分析。图 4 为样品的粒度分布 图。可以看出,随着超声作用时间的增加,粒度分布范 围变窄,颗粒的平均尺寸也小了很多。超声作用使材料 的颗粒尺寸更小、更加均一。表 2 为样品的比表面积和 粒度分布表。样品 LR-U12、 LR-U8、LR-U4、LR 的比 表面积分别为 1057、1049、1014、95.99 m²/kg,超声后 的样品其比表面积显著增加。相应的超声后材料的 *D*v90 也比较小,*D*v90 表示样品中小于该值的颗粒体积占了样 品总体积的 90%。

2.3 电化学性能分析

图 5a 为4种富锂材料在 0.1 C 倍率下的首次充/放电 曲线。可以看出,电极的充电曲线在 4.5 V 附近有一个 很长的充电平台。样品 LR-U12、 LR-U8、LR-U4、LR 的首次放电容量分别可以达到 314.0、327.8、315.5、265.2 mAh·g⁻¹。超声辅助制备的样品放电容量较高,且超声 8 h 的样品具有最高的放电比容量。由于制备的样品首次容量 高达 327.8 mAh·g⁻¹,根据 Dahn 等的报道^[26],认为在材料 的首次充/放电过程中有超过 1 个的 Li⁺参与了脱出、嵌 入反应,符合多电子反应的机制。

表 1 样品的晶胞参数及峰强比值 Table 1 Lattice parameters and the ratio of peak intensity of the samples

or the sumples						
	Sample	a/nm	c/nm	c/a	I(003)/I(104)	Grain size/nm
	LR-U12	0.2850	1.4223	4.991	1.336	68.6
	LR-U8	0.2853	1.4214	4.981	1.363	73.1
	LR-U4	0.2848	1.4200	4.985	1.441	74.3
	LR	0.2852	1.4227	4.988	1.574	84.5

图 3 样品前躯体的扫描电镜图和成品图 Fig.3 SEM images of precursors (a~d) and product (e~h): (a, e) LR-U12; (b, f) LR-U8; (c, g) LR-U4 (c); (d, h) LR

图 4 样品的粒度分布

Fig.4 Particle size distribution of the samples: (a) LR-U12,

(b) LR-U8, (c) LR-U4, and (d) LR

表 2 比表面积和粒度分布表 Table 2 BET and particle size distribution of the samples

Sample	BET/m ² ·kg ⁻¹	$D_{ m v50}/\mu{ m m}$	$D_{ m v90}/ m \mu m$
LR-U12	1057	8.6	20.1
LR-U8	1049	6.48	22.3
LR-U4	1014	9.57	29.6
LR	95.99	279	628

图 5b 为 4 种样品在不同倍率下的循环放电性能。经 过不同倍率循环后重新回到 0.1 C 充/放电时容量保持的 都很好。同样的,超声 8 h 的样品倍率性能最好,经过 不同的倍率循环 36 次后再回到 0.1 C 下仍有 301 mAh·g⁻¹ 的放电比容量。循环 52 次时,在 1 C 下放电容量仍有 196.4 mAh·g⁻¹。有此优异性能的原因可能是超声辅助制备使材料的形貌更均匀、粒度分布集中、较小的颗粒尺寸和大的比表面积可以增加Li⁺的吸附空位,增大和电解液的接触面积,缩短Li⁺的传输路径,从而有利于倍率性能的提升。

图 5c 为 4 种样品在 1 C 倍率下的性能。超声后的样品循环性能相差不大,但比未超声的样品性能好。1 C 下循环 50 次后 LR-U12、LR-U8、LR-U4、LR 放电容量分别为 177.12、181.57、174.31、167.0 mAh·g⁻¹,保持率分别为 83.35%、84.84%、81.89%、88.08%。虽然原始样品的保持率稍微高些,但是其放电容量低很多。综合看超声 8 h 的样品有最好的循环性能。

图 6 为材料的前 3 次和第 50 次的循环伏安曲线。可 以看出,4种样品均符合富锂材料的典型 CV 曲线,对 于首次循环曲线,在4.1 V 附近有1个氧化峰,这对应 着 Ni²⁺氧化为 Ni⁴⁺,为 Li⁺从层状结构中脱出,第 2 个氧 化峰位于 4.6~4.7 V 附近,是 Li₂MnO₃的活化过程,对 应着 Li₂O 从 Li₂MnO₃ 中脱出形成具有电化学活性的 MnO_2 ,而 Co^{3+} 氧化为 Co^{4+} 在这2个过程中也会发生^[25]。 在随后的循环中上述的2个特征氧化峰消失,在3.9~4.0 V附近出现1个比较宽的氧化峰,对应着 Ni 和 Co 的氧 化过程,在4.5 V 左右的氧化峰,对应着部分的 Co³⁺氧 化为 Co^{4+[27]}。有研究^[28]认为,首次的充电平台在材料表 面发生了析氧反应,即 O²⁻→O₂,而此过程不可逆,这 也解释了首次的充电平台在随后的循环中消失的现象。 但是在材料的体相中发生了可逆的 $O^{2-} \rightarrow 2O^{-}$ 的反应, Xia 等^[29]利用 XPS 等手段发现此现象只存在于 Li₂MnO₃组分 中,由此解释了富锂材料高容量的原因。在还原过程中, 4.2 V附近的还原峰对应着 Co^{4+}/Co^{3+} 的氧化还原,在 3.6 V 附近的还原峰对应着 Ni⁴⁺/Ni²⁺的氧化还原, 3.2 V 附近 的还原峰对应着 Mn⁴⁺/Mn³⁺的氧化还原^[30]。可以看到,

Fig.5 Initial charge/discharge curves at 0.1 C rate within voltage range of 2.0~4.8 V (a); rate performance at various current rates from 0.1 C to 2 C (b); cycling stability of the materials at 1 C (c)

图 6 循环伏安曲线 Fig.6 Cyclic voltammograms of LR-U12 (a), LR-U8 (b), LR-U4 (c), and LR (d) at a scan rate of 0.1 mV·s⁻¹

随着循环次数的增加,材料的还原峰逐渐向低电位偏移, 放电平台随着循环的进行逐渐下降,Mn的还原峰位越 来越低,转移到2.5~3.0V之间,Ni和Co的峰位变得不 太明显。这可能是材料循环后结构由层状转化为尖晶石 结构,导致材料高倍下充/放电性能较差。

图 6 中 Δ*V* 为第 2 次循环中 Ni 的氧化峰位和还原峰 位的电位差,由于首次循环为活化过程,故选择第 2 次 的循环曲线进行分析。对于符合 Nernst 方程的电极反应, 在 25 ℃时两个峰电位之差如下:

$$\Delta E_{\rm p} = E_{\rm pa} - E_{\rm pc} = \frac{57 - 63}{n} \ ({\rm mV}) \tag{1}$$

根据氧化还原电位差可以判断反应的可逆性^[31,32]。可以 看出,随着超声时间的增加,氧化还原电位差有变小的 趋势,且超声作用时间为8h时ΔV最小,为0.285V。 说明超声作用后提高了电池材料反应的可逆性,减小了 电极极化,有利于 Li⁺在充/放电过程中的脱出和嵌入。 结合图 5 的充/放电性能,说明超声作用可以使富锂材料 的形貌更均一、颗粒尺寸和比表面积更合适,从而增加 Li⁺的吸附及与电解液的接触面积、缩短 Li⁺的传输路径, 使材料具有高的电化学活性和循环稳定性^[17]。

为了进一步分析材料的电化学动力学,对电池进行 了交流阻抗 EIS 测试。图 7 为 4 个样品的交流阻抗图谱, 7a 是循环 1 次后在 1 C 下恒流充电到 4 V 的 EIS 结果,

Fig.7 Electrochemical impedance spectra of LR-U12, LR-U8, LR-U4, LR after 1st (a) and 52th (b)

7b 是循环 52 次后在1C下恒流充电到4V的EIS结果, 7a 中右下角为等效电路^[33]。表 3 是根据等效电路拟合出 的阻抗参数。从图中看出,4 种材料的Nyquist 曲线相似, 有高频区和中频区的两个半圆。根据文献报道^[33,34],第 1个半圆为Li⁺在表层的扩散阻抗,第 2个半圆为电荷转 移阻抗。等效电路图中,*R*_e为电池的溶液阻抗,*R*_{sf}为 Li⁺在材料表层的扩散阻抗,*R*_{ct}为电荷转移阻抗,*Z*_w为 Warburg 阻抗,描述Li⁺在体相中的扩散。由表 3 中的电 极材料的阻抗参数可以看出,超声后材料的*R*_{sf}和*R*_{ct}有 所降低。且经过首次充放电后超声 8 和 12 h 的样品的扩 散阻抗 *R*_{sf}和转移阻抗 *R*_{ct}明显比未处理的要小,经过 52 次充放电后超声 8 h 的样品阻抗明显低于其他的样品。 由此说明超声辅助对材料颗粒的尺寸和形貌的合理优 化,使材料的阻抗更小,因此更有利于电极性能的提升。

表 3 不同电极在第 1 次循环后和第 52 次循环后的阻抗参数 Table 3 Impedance parameters of the different electrodes after 1st and 52th cycle (Q)

	anter i	anu 52	Cycic (22)			
C	After 1 st cycle			Aft	After 52 th cycles		
Sample	Re	$R_{ m sf}$	R _{ct}	Re	$R_{ m sf}$	$R_{\rm ct}$	
LR-U12	3.59	9.36	52.2	6.11	540.0	130.6	
LR-U8	3.70	14.1	38.5	4.27	369.2	98.32	
LR-U4	3.54	46.1	49.6	7.95	632.3	147.6	
LR	3.82	89.6	60.7	10.4	740.7	210.5	

3 结 论

 运用超声辅助共沉淀法可以制备前躯体 (Ni_{1/6}Co_{1/6}Mn_{4/6})CO₃,进而和锂源混烧可制备出富锂材料 Li[Li_{0.144}Ni_{0.136}Co_{0.136}Mn_{0.544}]O₂。

 超声后的材料颗粒尺寸更小、更加均匀,晶体指 数更加有利于 Li⁺离子在材料中的扩散。

3) 超声后的材料电化学性能明显提高,尤其是超声 8 h 的样品表现出最好的性能,0.1 C 下首次放电容量为 327.83 mAh·g⁻¹,经过不同倍率循环 36 次后在 0.1 C 下仍 有 301 mAh·g⁻¹的放电比容量,循环 52 次后在 1 C 下放 电容量仍有 196.4 mAh·g⁻¹,1 C 下循环 50 次后的保持率 为 84.84%,均高于其他时长的超声效果。

 超声后复合材料的还原氧化峰电流更大,电荷转 移电阻更小,具有较好的倍率性能。

参考文献 References

- [1] Shi Siqi, Gao Jian, Liu Yue *et al. Chinese Physics B*[J], 2016, 25(1): 18 212
- [2] Lu Jiming(卢吉明), Zhou Yingke(周盈科), Tian Xiaohui(田小慧) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2017, 46(9): 2744

- [3] Du C F, Liang Q, Luo Y et al. Journal of Materials Chemistry A[J], 2017, 5(43): 22 442
- [4] Chu S, Cui Y, Liu N. Nature Materials[J], 2016, 16(1): 16
- [5] Liu Guoqiang(刘国强), Li Xueping(李雪萍), Li Ying(厉英) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2016, 45(7): 1755
- [6] Yang Wenchao(杨文超), Bi Yujing(毕玉敬), Yang Bangcheng(杨邦成) et al . Acta Phys Chim Sin(物理化学学报)[J], 2014, 30(3): 460
- [7] Qiu B, Zhang M, Xia Y et al. Chemistry of Materials[J], 2017, 29(3): 908
- [8] Xu M, Fei L, Lu W et al. Nano Energy[J], 2017, 35: 271
- [9] Nitta N, Wu F, Lee J T et al. Materials Today[J], 2015, 18(5): 252
- [10] Choi J W, Aurbach D. Nature Reviews Materials[J], 2016, 1(4): 16 013
- [11] Qiu B, Yin C, Xia Y et al. ACS Applied Materials & Interfaces[J], 2017, 9(4): 3661
- [12] Park S H, Kang S H, Johnson C S et al. Electrochemistry Communications[J], 2007, 9(2): 262
- [13] Lin J, Mu D, Jin Y et al. Journal of Power Sources[J], 2013, 230:76
- [14] Fu F, Tang J, Yao Y et al. ACS Applied Materials & Interfaces[J], 2016, 8(39): 25 654
- [15] Shi S J, Tu J P, Tang Y Y et al. Journal of Power Sources[J], 2013, 221: 300
- [16] Hong Y S, Yong J P, Ryu K S et al. Journal of Materials Chemistry[J], 2004, 14(9): 1424
- [17] Li L, Song S, Zhang X et al. Journal of Power Sources[J], 2014, 272: 922
- [18] Zheng X, Li X, Huang Z et al. Journal of Alloys & Compounds[J], 2015, 644: 607
- [19] Wang Y, Cao G. Cheminform[J], 2010, 39(37): 2251
- [20] Kobayashi H, Takenaka Y, Arachi Y et al. Solid State Ionics[J], 2012, 225(14): 580
- [21] Qiu B, Zhang Q, Hu H et al. Electrochimica Acta[J], 2014, 123(10): 317
- [22] Liu C, Wang Z, Shi C et al. ACS Applied Materials & Interfaces[J], 2014, 6(11): 8363
- [23] Thackeray M M, Kang S G, Johnson C S et al. Electrochemistry Communications[J], 2006, 8(9): 1531
- [24] Johnson C S, Li N, Lefief C et al. Cheminform[J], 2008, 20(19): 6095
- [25] Li D, Sasaki Y, Kobayakawa K *et al. Journal of Power Sources*[J], 2006, 157(1): 488
- [26] Lu Z, Dahn J. Journal of the Electrochemical Society[J], 2002,

149(7): 815

- [27] Martha S K, Nanda J, Veith G M et al. Journal of Power Sources[J], 2012, 199(1): 220
- [28] Koga H, Croguennec L, Menetrier M et al. Journal of the Electrochemical Society[J], 2013, 160(6): 786
- [29] Han S, Xia Y, Wei Z et al. Journal of Materials Chemistry A[J], 2015, 3(22): 11 930
- [30] Huang Z D, Liu X M, Zhang B et al. Scripta Materialia[J], 2011, 64(2): 122

- [31] Shi S J, Tu J P, Tang Y Y et al. Journal of Power Sources[J], 2013, 240(1): 140
- [32] Li Jun(李 军), Li Shaofang(李少芳), Li Qingbiao(李庆彪) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2017, 46(11): 3458
- [33] Wei Z, Zhang W, Wang F et al. Chemistry[J], 2015, 21(20): 750
- [34] Zhuang Quanchao(庄全超), Xu Shoudong(徐守冬), Qiu Xiangyun(邱祥云) et al. Process in Chemistry(化学进展)[J], 2010, 22(6): 1044

Preparation of Li-Rich Materials by Ultrasonic-Assisted Co-precipitation Method

Xu Jinpeng, Jiang Jingwen, Huang Haifu, Li Guangxu, Liang Xianqing, Zhou Wenzheng, Guo Jin, Huang Dan (Guangxi Key Laboratory for Nonferrous Metal and Featured Materials, Guangxi Novel Bettery Materials Research Center of Engineering Technology, School of Physical Science and Technology, Guangxi University, Nanning 530004, China)

Abstract: The effect of different ultrasonic time on the morphology, structure and electrochemical performance of Li-rich materials $\text{Li}[\text{Li}_{0.144}\text{Ni}_{0.136}\text{Co}_{0.136}\text{Mn}_{0.544}]\text{O}_2$ was studied by a ultrasonic assisted co-precipitation method. Results show that ultrasonic assisting can make the materials more uniform, and therefore the structure becomes more reasonable, which is beneficial to the improvement of the electrochemical performance. The sample with 8 h ultrasonic time shows the best capacity, and the initial discharge specific capacity of 0.1 C rate is 327.8 mAh·g⁻¹ (higher than 265.2 mAh·g⁻¹ of the sample without ultrasonic). The discharge capacity is 181.6 mAh·g⁻¹ at 1C rate after 50 cycles, with the capacity retention of 84.8%. After the cyclic voltammetry test and the EIS test, it is found that the composite oxide has higher current, lower charge transfer impedance and better rate performance.

Key words: lithium-ion batteries; Li[Li0.144Ni0.136C00.136Mn0.544]O2; ultrasonic-assisted co-precipitation

Corresponding author: Huang Dan, Ph. D., Professor, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China, Tel: 0086-771-3232666, E-mail: danhuang@gxu.edu.cn