+高级检索
Ti基非晶复合材料的强韧化机理研究
DOI:
作者:
作者单位:

1.兰州理工大学 省部共建甘肃省有色金属加工与再利用国家重点实验室;2.兰州理工大学 材料科学与工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51661017,51551101,51571105,51661016); 甘肃省杰出青年基金(17JR5RA108);


Study on strengthening and toughening mechanism of Ti-based metallic glass composites
Author:
Affiliation:

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用水冷铜坩埚磁悬浮熔炼-铜模吸铸法在真空及高纯氩气保护条件下制备了直径3mm的(Ti0.5Ni0.48M0.02)80Cu20 (M=Fe、Ce、Zr)合金,研究了Fe、Ce、Zr对合金凝固组织中形状记忆晶相析出的变化规律,分析了该合金的室温力学行为与强韧化机理。研究发现,(Ti0.5Ni0.48M0.02)80Cu20 (M=Fe、Ce、Zr)合金铸态结构均为非晶+形状记忆晶相(B2过冷奥氏体和B19热致马氏体)的复合结构,其中M=Fe的合金B2相体积分数析出最多,M=Zr的合金B19,相体积分数最多。在室温压缩过程中,合金均表现出良好的综合力学性能,其中以M=Ce 的合金性能最优,断裂强度,屈服强度,塑性应变分别达到2645Mpa,1150Mpa和12.2%。合金在受压应力断裂后,组织中奥氏体相体积分数减小,马氏体相体积分数增加,同时在屈服后均表现出强烈的加工硬化行为。加工硬化速率和瞬时加工硬化速率随真应变的变化分为三个阶段,合金内部在压应力的作用下B2向B19,相转变是合金强韧化的主要动力。M=Fe的合金加工硬化速率、平均加工硬化指数、瞬时加工硬化指数最大,加工硬化能力最强,M=Ce的合金次之,M=Zr的合金最弱。

    Abstract:

    (Ti0.5Ni0.48M0.02)80Cu20 (M=Fe, Ce and Zr) with 3mm diameter was fabricated by suspend melting under argon atmosphere using a water-cooled Cu mold. The influences of Fe, Ce and Zr on the shape-memory crystalline phase precipitation law in the solidification structure of alloys were studied, and the mechanical behaviors at room temperature and strengthening and toughening mechanism of alloys analyzed as well. The results showed that the as-cast microstructure of (Ti0.5Ni0.48M0.02)80Cu20 (M=Fe, Ce and Zr) alloys are the amorphous matrix and shape-memory crystal phase (B2 undercooled austenite and B19’ thermal martensite) structure. The B2 phase volume fraction precipitates most in M=Fe alloy. In M=Zr alloy, the B19,phase volume fraction precipitates most. The alloys all exihibit good comprehensive mechanical properties, among which M=Ce alloy with the best comprehensive mechanical properties, and the fracture strength, yield strength and plastic strain are 2645Mpa, 1150Mpa and 12.2%, respectively. After alloys fracture with loading, the B2 austenitic phase volume fraction decrease and B19,martensite increase. Moreover, the room temperature deformation behavior of alloys can be described as elastic deformation and strong work hardening after yielding. The work hardening rate and instantaneous work hardening rate are divided into three stages with the change of true strain, and the transformation of B2 to B19" under the compressive stress is the mainly force of alloy strengthening and toughening. The work hardening rate, work hardening exponent and instantaneous work hardening index of the M=Fe alloy are the largest and its work hardening ability is the strongest, the work hardening ability of M=Ce alloy weaker than M=Fe alloy, and M= Zr alloy is the weakest.

    参考文献
    相似文献
    引证文献
引用本文

赵燕春,毛瑞鹏,许丛郁,孙浩,蒋建龙,寇生中. Ti基非晶复合材料的强韧化机理研究[J].稀有金属材料与工程,2019,48(6):1841~1846.[Zhao Yanchun, Mao Ruipeng, Xu Congyu, Sun Hao, Jiang Jianlong, Kou Shengzhong. Study on strengthening and toughening mechanism of Ti-based metallic glass composites[J]. Rare Metal Materials and Engineering,2019,48(6):1841~1846.]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-02-19
  • 最后修改日期:2018-05-05
  • 录用日期:2018-05-18
  • 在线发布日期: 2019-07-30
  • 出版日期: