+高级检索
SiC纤维增强高温合金复合材料可行性分析
作者:
作者单位:

北京科技大学 材料科学与工程学院

基金项目:

高温结构材料重点实验室开放基金


THE FEASIBILITY ANALYSIS OF SIC FIBER REINFORCED SUPERALLOY-BASED COMPOSITE
Author:
Affiliation:

1.School of materials science and engineering,University of Science and Technology Beijing,Beijing,100083;2.China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    SiC纤维增强金属基复合材料因耐高温、低密度等特点,在航空航天领域逐渐推广。为进一步提高SiC纤维增强金属基复合材料的使用温度,国内外开始尝试将SiC纤维与高温合金进行复合,以期发挥两者的优点,获得性能更加优良的高温结构材料。但SiC纤维增强高温合金复合材料发展缓慢,诸多尝试均未取得突破性的成功,界面问题是制约该类材料发展的“瓶颈”。虽然在克服界面反应方面也采取了诸多尝试,但该问题并未获得实质性的解决,因此有必要从根源入手对SiC纤维增强高温合金复合材料这一研究方向的可行性进行探讨。本文采用资料研究和实验研究相结合的方式,从SiC纤维增强高温合金复合材料的发展历史、界面反应问题的解决方案、SiC与高温合金界面反应的本质等几个方面逐层展开、一一论述,对SiC纤维增强高温合金复合材料的可行性进行阐述和分析。

    Abstract:

    SiC fiber reinforced metal-base composite is more and more widely used in aerospace field for the higher temperature capability, lower density. SiC fiber reinforced Ti, Al, Mg based composites have proved to be great success. But the usage temperature of these composites has been limited by the usage temperature of base metal. In order to further increase the temperature capability of SiC fiber reinforced metal-base composite and obtain high-temperature structural material with better properties, there are some attempts of SiC fiber reinforced superalloy-base composite at home and aboard. However, the development of SiC fiber reinforced superalloy-base composite is in slow development and there has not been breakthrough success. The bottleneck for the development of SiC fiber reinforced superalloy-base composite is the interface reaction between SiC fiber and superalloy base. Many attempts (such as a variety of interface coatings) have been made to conquer this challenge, however, no mature solution has been found. Hence, it is necessary to systematically analyze the feasibility of SiC fiber reinforced superalloy-based composite. In this paper, the origin and development of SiC fiber reinforced superalloy-based composites in past decades were narrated. The failure cases and reasons were summarized. Moreover, the attempts of interface coating and disadvantages of this method were analyzed. Experiments and simulations were carried out to investigate the interface reaction between SiC fiber and major superalloy elements. The results show that the reaction between SiC fiber and major superalloy elements is severe and cannot be avoided. Further analysis on the essence of severe reaction between SiC fiber and superalloy was made. The experiment and analysis show that SiC fiber and superalloy are intrinsically incompatible, and the interface reaction trend is severe. Interface coating can hinder the reaction in some extent. But the reaction trend is so severe that any minor failure of coating will result in catastrophic result. The above reasons indicate that it is difficult for SiC fiber reinforced superalloy-base composite to be used commercially in the near future.

    参考文献
    参考文献 References
    [1] 刘巧沐, 黄顺洲, 刘佳,等. 高温材料研究进展及其在航空发动机上的应用 [J]. 燃气涡轮试验与研究, 2014, 4): 51-6.
    [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨 [J]. 复合材料学报, 2007, 24(2): 1-6.
    [3] HOOKER J A, DOORBAR P J. Metal matrix composites for aeroengines [J]. Metal Science Journal, 2013, 16(7-8): 725-31.
    [4] D. B. Metal matrix composites - From science to technological significance [J]. Composites Science Technology, 2005, 65(15): 2526-40.
    [5] 张国兴, 王玉敏, 杨青,等. SiC纤维增强GH4169复合材料界面分析;第十一届中国钢铁年会论文集——S13高温合金, F, 2017 [C].
    [6] 李佩桓, 张勇, 王涛, 等. SiC纤维增强GH4738复合材料的界面行为研究 [J]. 热加工工艺, 2017, 10): 117-20.
    [7] 张露. SiC纤维增强Ni基复合材料的制备和性能研究 [D]; 中国科学院研究生院 中国科学院大学, 2011.
    [8] 汪龙. SiC纤维增强Ni合金基复合材料的制备 [D]; 中国科学院, 2013.
    [9] 牛西茜, 汪龙, 张浩强,等. SiC纤维增强Ni-Cr-Al合金复合材料先驱丝的制备 [J]. 稀有金属材料与工程, 2017, 11):3550-5.
    [10] 宫骏, 牛西茜, 张浩强,等. 一种SiC纤维增强Ni合金基复合材料及其制备方法.(专利)
    [11] 林海涛. SiC纤维增强镍基复合材料的界面研究 [D],东北大学, 2007.
    [12] CHEN J, HAO H, KAN Z, et al. Interfacial reactions in the SiCf /Ni3Al composites by employing C single coating and C+Y2O3 duplex coating as barrier layers [J]. Journal of Alloys Compounds, 2018, 765(18-26.
    [13] STOROZHENKO M S, UMANSKII A P, CHUPROV S S, et al. Composites based on TiB–SiC with a nickel–chromium matrix [J]. Powder Metallurgy Metal Ceramics, 2012,
    [14] ZHANG L, SHI N, GONG J. Preparation of SiC Fiber Reinforced Nickel Matrix Composite [J]. Journal of Materials Science Technology, 2012, 28(03): 234-240
    [15] 刘翠霞, 杨延清, 徐婷, 等. 化学气相沉积法连续SiC纤维的研究现状和发展趋势 [J]. 材料导报, 2006, 20(8): 35-7.
    [16] 李佩桓, 张勇, 王涛, 等. 连续SiC纤维增强金属基复合材料研究进展 [J]. 材料工程, 2016, 44(8): 121-9.
    [17] 罗国珍. 钛基复合材料的研究与发展 [J]. 稀有金属材料与工程, 1997, 2): 1-7.
    [18] KRISHNAMURTHY, SMITH, P. R, et al. Modification of transverse creep behavior of an orthorhombic titanium aluminide based Ti-22Al-23Nb/SiCf composite using heat treatment [J]. Materials Science Engineering A, 1998, 243(1–2): 285-9.
    [19] WANG Y, ZHANG G, ZHANG X, et al. ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES [J]. Acta Metallurgica Sinica, 2016,
    [20] 黄旭, 李臻熙, 黄浩. 高推重比航空发动机用新型高温钛合金研究进展 [J]. 中国材料进展, 2011, 30(6): 21-7.
    [21] 葛长闯, 曹航, 伊锋. 纤维增强整体叶环/盘强度问题分析 [J]. 航空发动机, 2013, 39(4): 45-50.
    [22] 吉付兴, 曹凤江, 谭建波, 等. 纤维增强铝基合金材料的研究现状 [J]. 内燃机与配件, 2017, 10): 117-20.
    [23] CORNIE J A, COOK C S, ANDERSON C A, Fabrication process development of SiCsuperalloy composite sheet for exhaust system components, NASA Report, 1976.
    [24] MEHAN R L, MCKEE D W. Interaction of metals and alloys with silicon-based ceramics [J]. Journal of Materials Science, 1976, 11(6): 1009-18.
    [25] CORNIE J A, Characterization, shaping, and joining of SiC/superalloy sheet for exhaust system components, NASA Report, 1977.
    [26] MEHAN R L, BOLON R B. Interaction between silicon carbide and a nickel-based superalloy at elevated temperatures [J]. Journal of Materials Science, 1979, 14(10): 2471-81.
    [27] 李佩桓, 曲选辉, 张勇,等. SiC/GH4738复合材料高温性能及断裂机理研究;第十三届中国高温合金年会摘要文集, F, 2015 [C].
    [28] 李佩桓. 连续SiC纤维增强镍基复合材料的制备及界面行为研究 [D]; 北京科技大学, 2018.
    [29] 王涛, 赵宇新, 付书红, 等. 连续纤维增强金属基复合材料的研制进展及关键问题 [J]. 航空材料学报, 2013, 33(2): 87-96.
    [30] GUO S, HU C, HONG G, et al. SiC(SCS-6) fiber-reinforced Ti 3 AlC 2 matrix composites: Interfacial characterization and mechanical behavior [J]. Journal of the European Ceramic Society, 2014, 35(5): 1375-84.
    [31] MCKEE D W. Ceramic superalloy articles. US Patent, 2002.
    [32] HATTALI M L, VALETTE S, ROPITAL F, et al. Study of SiC–nickel alloy bonding for high temperature applications [J]. Journal of the European Ceramic Society, 2009, 29(4): 813-9.
    [33] BHANUMURTHY K, SCHMID-FETZER R. Interface reactions between silicon carbide and metals (Ni, Cr, Pd, Zr) [J]. Composites Part A: Applied Science Manufacturing, 2001, 32(3): 569-74.
    [34] PARK, J. S, LANDRY, et al. Kinetic control of silicon carbide/metal reactions [J]. Materials Science Engineering A, 1999, 259(2): 279-86.
    [35] 文琼. SiC纤维增强Ti基复合材料的微观组织 [D]; 西北工业大学, 2005.
    [36] EL-SAYED M H, NAKA M, SCHUSTER J C. Interfacial structure and reaction mechanism of AlN/Ti joints [J]. Journal of Materials Science, 1997, 32(10): 2715-21.
    [37] NAKA M, FENG J C, SCHUSTER J C. Phase reaction and diffusion path of the SiC/Ti system [J]. Metallurgical Materials Transactions A, 1997, 28(6): 1385-90.
    [38] KUROKAWA K, MIYAMOTO K, NAGASAKI R. Solid State Reactions Between V-Base Alloys and Silicon Carbide at High Temperatures [J]. in Reduced Activation Materials for Fusion Reactors, edited by Klueh, R., Gelles, D., Okada, M., and Packan, N. (West Conshohocken, PA: ASTM International, 1990), 236-247.
    [39] GEIB K M, WILSON C, LONG R G, et al. Reaction between SiC and W, Mo, and Ta at elevated temperatures [J]. Journal of Applied Physics, 1990, 68(6): 2796-800.
    [40] CHU J J, CHEN L J, TU K N. Localized epitaxial growth of ReSi2 on (111) and (001) silicon [J]. Journal of Applied Physics, 1987, 62(2): 461-5.
    [41] CHOU T C, JOSHI A. High Temperature Interfacial Reactions of SiC with Metals [J]. Journal of Vacuum Science Technology A Vacuum Surfaces Films, 1991, 9(3): 1525-34.
    [42] FUJIMURA T, TANAKA S I. In-situ high temperature X-ray diffraction study of Ni/SiC interface reactions [J]. Journal of Materials Science, 1999,
    [43] KUROKAWA K, NAGASAKI R. Reactivity of Sintered SiC with Metals [M]. 1988: 1397-402.
    [44] MARTINEAU P, LAHAYE M, PAILLER R, et al. SiC filament/titanium matrix composites regarded as model composites [J]. Journal of Materials Science, 1984, 19(8): 2731-48.
    [45] 王玉敏, 张国兴, 张旭,等. 连续SiC纤维增强钛基复合材料研究进展 [J]. 金属学报, 2016, 52(10): 1153-70.
    [46] DICARLO J A, YUN H M, MORSCHER G N, et al. SiC/SiC Composites for 1200℃ and Above, NASA Report, 2004.
    [47] MORSCHER G N, Advanced Woven SiC/SiC Composites for High Temperature Applications, NASA Report, 2007.
    [48] DICARLO J A. Advances in SiC/SiC Composites for Aero-Propulsion, NASA Reprot, 2013.
    [49] SINGH M, HALBIG M C, Additive Manufacturing of SiC-Based Ceramics and Ceramic Matrix Composites, NASA Report, 2015.
    [50] DONGMING Z, Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites For Turbine Engine Applications, NASA Report, 2018.
    [51] ZHENG L, ZHOU X, YU J, et al. Mechanical properties of SiC/SiC composites fabricated by PIP process with a new precursor polymer [J]. Ceramics International, 2014, 40(1): 1939-44.
    [52] WANG H, GAO S, PENG S, et al. KD-S SiC f /SiC composites with BN interface fabricated by polymer infiltration and pyrolysis process [J]. Journal of Advanced Ceramics, 2018, 7(2): 1-9.
    [53] XIONG L, LI Y, LIU J, et al. Improvement of the mechanical properties of SiC reticulated porous ceramics with optimized three-layered struts for porous media combustion [J]. Ceramics International, 2016, 43(4): 3741-7.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江河,王法,李昕,董建新. SiC纤维增强高温合金复合材料可行性分析[J].稀有金属材料与工程,2021,50(1):349~360.[JIANG He, WANG Fa, LI Xin, DONG Jianxin. THE FEASIBILITY ANALYSIS OF SIC FIBER REINFORCED SUPERALLOY-BASED COMPOSITE[J]. Rare Metal Materials and Engineering,2021,50(1):349~360.]
DOI:10.12442/j. issn.1002-185X.20191101

复制
文章指标
  • 点击次数:756
  • 下载次数: 1542
  • HTML阅读次数: 167
  • 引用次数: 0
历史
  • 收稿日期:2019-12-28
  • 最后修改日期:2020-01-16
  • 录用日期:2020-02-21
  • 在线发布日期: 2021-02-05