+高级检索
Mg元素对Al-Cu-Ce共晶合金导热和力学性能的影响
作者单位:

1.华南理工大学;2.广西民族大学;3.广西南南铝加工有限公司

基金项目:

广西科技基地与人才专项(桂科AD22035222)、南宁市科学研究与技术开发计划项目(20221017)、南宁市创新创业领军人才“邕江计划”资助项目(2021006)、广西民族大学校级引进人才科研项目(2020KJQD04)


Effects of Mg contents on thermal conductivities and mechanical properties of Al-Cu-Ce eutectic alloys
Affiliation:

South China University of Technology

Fund Project:

Guangxi Science and Technology Base and Talent Special Project (No. AD22035222), Nanning Municipal Scientific Research and Technological Development Program (No. 20221017), Nanning Leading Talent Support Program for Innovation and Entrepreneurship

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究以共晶型Al-14Cu-7Ce合金作为研究对象,通过调整Mg元素的添加量,探究其微观组织演变与导热和力学性能的变化规律。结果表明,铸态Al-14Cu-7Ce合金主要由α-Al和Al8CeCu4两相组成,其微观组织由粗大的共晶组织(α-Al+ Al8CeCu4)构成。添加少量Mg元素可细化该共晶组织,提高其力学性能。当Mg元素的添加量为1.0%时,合金的屈服强度和抗拉强度分别提升至164 MPa和263 MPa,提升幅度为29%和19%,断后延伸率提升至4.5%,提升幅度为约41%,导热率为130.2 W/(m·K),下降幅度约为12%。随着Mg元素进一步添加至2.0%,合金的力学性能指标有所下降,其屈服强度和抗拉强度分别降至151 MPa和249 MPa,其断后延伸率降为3.9%,导热率降至108.3 W/(m·K)。合金导热率下降主要原因是固溶的Mg原子形成散射源,阻碍电子在晶格内的运动,减小了电子和声子的平均自由程。当Mg添加量达到2.0%时,Mg与Al和Cu元素发生冶金反应生成Al2MgCu相,以鱼骨状共晶组织(α-Al+ Al2MgCu)形式分布于晶界处,增加合金中第二相的体积分数,进一步恶化合金的导电导热性能。而合金的力学性能下降主要由于存在 (α-Al+ Al8CeCu4)和(α-Al+ Al2MgCu)两种共晶组织,增加相界面处微裂纹萌生的位点。综上所述,添加1.0%Mg元素可获得兼具高强度和高导热的Al-Cu-Ce共晶合金。

    Abstract:

    This study focuses on the eutectic Al-14Cu-7Ce alloy to investigate the evolution of its microstructure and the changes in thermal conductivity and mechanical properties by adjusting the amount of Mg element added. The results show that the as-cast Al-14Cu-7Ce alloy is mainly composed of α-Al and Al8CeCu4 phases, with a microstructure consisting of coarse eutectic structure (α-Al + Al8CeCu4). The addition of a small amount of Mg element can refine the eutectic structure and improve its mechanical properties. With an addition of 1.0% Mg, the alloy"s yield strength and tensile strength increase to 164 MPa and 263 MPa, respectively, with an improvement of 29% and 19%. The elongation at break is enhanced to 4.5%, with an improvement of approximately 41%. The thermal conductivity is 130.2 W/(m·K), with a decrease of about 12%. As the Mg element is further increased to 2.0%, the mechanical properties of the alloy decrease, with the yield strength and tensile strength decreasing to 151 MPa and 249 MPa, respectively. The elongation at break decreases to 3.9%, and the thermal conductivity decreases to 108.3 W/(m·K). The decrease in thermal conductivity is mainly due to the solid solution of Mg atoms acting as scattering centers, hindering the movement of electrons within the lattice, and reducing the average free path of electrons and phonons. When the Mg content reaches 2.0%, the Mg reacts with Al and Cu elements to form the Al2MgCu phase, which is distributed in a fishbone-shaped eutectic structure (α-Al + Al2MgCu) at grain boundaries. This increases the volume fraction of the second phase in the alloy and further deteriorates its electrical and thermal conductivity. The decrease in mechanical properties of the alloy is mainly attributed to the presence of two eutectic structures, (α-Al + Al8CeCu4) and (α-Al + Al2MgCu), which increase the occurrence of microcracks at the phase interfaces. In summary, the addition of 1.0% Mg can obtain an Al-Cu-Ce eutectic alloy with high strength and high thermal conductivity.

    参考文献
    [1] Guan Renguo(管仁国),Lou Huafen(娄花芬),Huang Hui(黄晖)et al. Strategic Study of CAE(中国工程科学)[J]. 2020: 22, 68-75.
    [2] Wang Hui(王慧),Li Yuangdong(李元东),Luo Xiaomei(罗晓梅)et al. Foundry(铸造)[J]. 2019: 68, 1104-1110.
    [3] Li Runxia, Liu Lanji, Zhang Lijun et al. Journal of Materials Science Technology[J]. 2017, 33(4): 404-410.
    [4] Yang Dixin(杨涤心),Xia Qing(夏青),Yang Liushuan(杨留栓)et al. Special Casting Nonferrous Alloys(特种铸造及有色合金)[J]. 200258-60.
    [5] Sheng Meng, Tao Zhendong, Jia Peng et al. JOM[J]. 2015, 67(2): 330-335.
    [6] Wu Mengwu(吴孟武),Hua Lin(华林),Zhou Jianxin(周建新)et al. Materials Reports(材料导报)[J]. 2018: 32, 1486-1495.
    [7] Luo Gan, Zhou Xiong, Li Chengbo et al. Transactions of Nonferrous Metals Society of China[J]. 2022, 32(6): 1781-1794.
    [8] Wang Kang, Hu Shaodong, Zhong Yanglin et al. Journal of Rare Earths[J]. 2022, 40(8): 1305-1315.
    [9] Chen Dahui(陈大辉),Chen Zheng(陈铮),Zhu Xiurong(朱秀荣)et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J]. 2017: 46, 3525-3531.
    [10] Gan Luo. Study on microstructure regulation and performance of Al-Fe based alloys with high thermal conductivity(高导热Al-Fe基合金组织调控与性能研究)[D]. Guangzhou: South China University of Technology, 2021.
    [11] Du Jiandi, Ding Dongyan, Zhang Wenlong et al. Materials Characterization[J]. 2018, 142: 252-260.
    [12] WANG Mingjie(王明杰),DONG Ying(董莹),ZHANG Guowei(张国伟). Foundry Technology(铸造技术)[J]. 2019: 40, 179-182.
    [13] Xue Fei(薛飞),Liu Jiangnan(刘江南),Yan Wen(严文)et al. Foundry Technology(铸造技术)[J]. 200154-56.
    [14] Belov N. A., Khvan A. V. Russian Journal of Non-Ferrous Metals[J]. 2007, 48(1): 45-50.
    [15] Huang Ling(黄玲),Li Hai(李海),Wang Zhixiu(王芝秀)et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J]. 2012: 33, 60-64.
    [16] Chen Dahui(陈大辉),Chen Zheng(陈铮),Zhu Xiurong(朱秀荣)et al. Special Casting Nonferrous Alloys(特种铸造及有色合金)[J]. 2018: 38, 1280-1284.
    [17] Fan Boyang(樊博阳),Li Yuandong(李元东),Li Xiang(李想)et al. Special Casting Nonferrous Alloys(特种铸造及有色合金)[J]. 2021: 41, 168-173.
    [18] Pan Hucheng, Pan Fusheng, Yang Rumin et al. Journal of Materials Science[J]. 2014, 49(8): 3107-3124.
    [19] Rudajevová A., von Buch F., Mordike B. L. Journal of Alloys and Compounds[J]. 1999, 292(1): 27-30.
    [20] Weiping Cai. Journal of Materials Science Letters[J]. 1997, 16(22): 1824-1826.
    [21] Su Chuangye, Li Dejiang, Luo Alan A. et al. Journal of Alloys and Compounds[J]. 2018, 747: 431-437.
    [22] Alexopoulos N. D., Pantelakis Sp. G. Materials Design[J]. 2004, 25(5): 419-430.
    [23] Wang Tongmin, Zhao Yufei, Chen Zongning et al. Materials Design[J]. 2015, 85: 724-732.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李乘波,侯慧兵,刘磊磊,黄程毅,任月路,杜军. Mg元素对Al-Cu-Ce共晶合金导热和力学性能的影响[J].稀有金属材料与工程,2024,53(5):1385~1390.[Li Chengbo, Hou Huibing, Liu Leilei, Huang Chengyi, Ren Yuelu, Du Jun. Effects of Mg contents on thermal conductivities and mechanical properties of Al-Cu-Ce eutectic alloys[J]. Rare Metal Materials and Engineering,2024,53(5):1385~1390.]
DOI:10.12442/j. issn.1002-185X.20230521

复制
文章指标
  • 点击次数:232
  • 下载次数: 605
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-08-22
  • 最后修改日期:2023-12-21
  • 录用日期:2024-01-05
  • 在线发布日期: 2024-05-28
  • 出版日期: 2024-05-22