+高级检索
FeCrMnAlCux高熵合金在0.5 M H2SO4溶液中耐腐蚀性能的研究
基金项目:

中核核电运行管理有限公司研发项目(QS4FY-22003224)


Corrosion Resistance of FeCrMnAlCux High-Entropy Alloys in 0.5 M H2SO4 Solution
Fund Project:

China National Nuclear Power Plant operation (QS4FY-22003224)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文采用真空电弧熔炼技术制备出FeCrMnAlCux(x=0, 0.5, 1.0, 1.5, 2.0)高熵合金,通过XRD、SEM、EDS对合金的相结构及腐蚀前后的微观组织进行表征,利用动电位极化曲线、EIS、XPS以及浸泡实验对合金在0.5M H2SO4溶液中的腐蚀性能进行分析。研究结果表明:Cu元素的加入促进了合金中FCC相的形成,使合金由单一BCC结构转变为BCC+FCC双相混合结构。五种成分的高熵合金具有典型的枝晶形貌,随着Cu含量的增加,晶粒逐渐细化,组织逐渐均匀。FeCrMnAlCu1.5高熵合金的腐蚀电位最高(-0.363 V),腐蚀电流密度最小(2.148×10-5 A/cm2),合金的耐蚀性随着Cu含量的增加先提高后下降,当x=2.0时,腐蚀电位减小到-0.394 V,电流密度增大到2.865×10-4 A/cm2,其耐蚀性能仍优于未添加Cu元素的合金。腐蚀后合金截面处形成了复合氧化物保护膜,有效降低了合金在0.5 M H2SO4溶液中的腐蚀速率。

    Abstract:

    This study employs vacuum arc melting technology to fabricate FeCrMnAlCux (x=0, 0.5, 1.0, 1.5, 2.0) high-entropy alloys. The phase structure and microstructure of the alloys before and after corrosion were characterized using XRD, SEM, and EDS. The corrosion behavior of the alloys in 0.5M H2SO4 solution was analyzed through potentiodynamic polarization curves, EIS, XPS, and immersion tests. The results indicate that the addition of Cu promotes the formation of the FCC phase in the alloy, transforming it from a single BCC structure to a mixed BCC+FCC dual-phase structure. The high-entropy alloys with five different compositions exhibit a typical dendritic morphology. As the Cu content increases, the grains gradually refine, and the microstructure becomes more uniform. The FeCrMnAlCu1.5 high-entropy alloy has the highest corrosion potential (-0.363 V) and the lowest corrosion current density (2.148×10-5 A/cm2). The alloy"s corrosion resistance initially improves and then deteriorates with increasing Cu content. At x=2.0, the corrosion potential decreases to -0.394 V, and the current density increases to 2.865×10-4 A/cm2, yet its corrosion resistance is still superior to that of the alloy without added Cu. After corrosion, a composite oxide protective film forms on the cross-section of the alloy, effectively reducing its corrosion rate in 0.5M H2SO4 solution.

    参考文献
    [1] J W. Yeh, S K. Chen, S J. Lin, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements:Novel AlloyDesign Concepts andOutcomes[J]. Advanced Engineering Materials, 2004, 6:299-303.
    [2] A U. Samuel, O S. Fayomi, A O. Omotosho. Prospect of high entropy alloys (HETAs) for advance application[J]. Materials Science and Engineering, 2021,S1107(1): 012162.
    [3] Yao-Jen Chang, An-Chou Yeh. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys[J]. Journal of Alloys and Compounds, 2015, 653:379-385.
    [4] Cheng Z, Wang S, Wu G, et al.STribological properties of high-entropy alloys: A review.SInt J Miner Metall Mater, 2022, 29:389–403 .
    [5] Xin Wang, Yunpeng Zhang. Microstructures and corrosion resistance properties of as-cast and homogenized AlFeNiCuCr high entropy alloy[J]. Materials Chemistry and Physics, 2020, 254:123440.
    [6] R B. Nair, H S. Arora, Sundeep Mukherjee, et al. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy[J]. Ultrasonics Sonochemistry, 2018, 41:252-260.
    [7] Georgy Lazorenko, Anton Kasprzhitskii, Tatiana Nazdracheva. Anti-corrosion coatings for protection of steel railway structures exposed to atmospheric environments: A review[J]. Construction and Building Materials, 2021, 288: 123115.
    [8] Meng Chen, Hongyu Cen, Chengbin Guo, et al. Preparation of Cu-MOFs and its corrosion inhibition effect for carbon steel in hydrochloric acid solution[J]. Journal of Molecular Liquids, 2020,318: 114328.
    [9] 李刚, 温影, 蒋谭琳等. Cu、Co元素对激光烧结CrFeNiAlSi高熵合金组织与性能的影响[J]. 金属热处理, 2019, 44(06):80-85.
    [10] A Verma, P Tarate, A C. Abhyankar, et al. High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu[J]. Scripta Materialia, 2019, 10:28-31.
    [11] Kim S J, Kim Y I, Lamichhane B, et al. Flat-surface-assisted and self-regulated oxidation resistance of Cu (111)[J]. Nature, 2022, 603(7901): 434-438.
    [12] Kai Huang, Guanming Wang, Huawen Qing, et al. Effect of Cu content on electrical resistivity, mechanical properties and corrosion resistance of AlCuxNiTiZr0.75 high entropy alloy films[J]. Vacuum, 2022, 195:110695.
    [13] Xiaotian Yang, Rong Zeng, Xiaoyue Fu, et al. Influence of the Cu content on the electrochemical corrosion performances of Ni60 coating[J]. Corrosion Science, 2022, 205:110408.
    [14] Chen X, Qian H, Lou Y, et al. Effects of Cu-content and passivation treatment on the corrosion resistance of Al0.3CuxCoCrFeNi high-entropy alloys[J]. Journal of Alloys and Compounds, 2022, 920: 165956.
    [15] 冯力,许晨,文杰等. FeCrMnAlCux高熵合金组织与性能[J/OL].中国有色金属学报:1-18[2023-07-31].
    [16] Li R, Liu X, Liu W, et al. Design of Hierarchical Porosity Via Manipulating Chemical and Microstructural Complexities in High-Entropy Alloys for Efficient Water Electrolysis[J]. Advanced Science, 2022, 9(12): 2105808.
    [17] Mohammed A. Amin, K F. Khaled, Sahar A. Fadl-Allah.Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions–Experimental and theoretical studies[J]. Corrosion Science, 2010, 52: 140-151.
    [18] Bahari, H S, Savaloni, H. Corrosion Inhibition of Cu Coated with Ni and Annealed with Flow of Oxygen in NaCl Solution as a Function of Annealing Temperature[J].SMet. Mater, 2020, 26: 1621-1633.
    [19] J Z. Lu, B. Han, C Y. Cui, et al. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers[J]. Optics Laser Technology, 2017 ,88: 250-262.
    [20] Sepehr Mosayebi, Milad Rezaei, Zeynab Mahidashti. Comparing corrosion behavior of Ni and Ni-Mo electroplated coatings in chloride mediums[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594: 124654.
    [21] Hong MS, Park, IJ. Kim, JG. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube[J].SMetals and Materials International, 2017, 23:708–714.
    [22] Dutta A, Sivaji T, Ghosh M, et al. Corrosion behavior of AlCuFeMn alloy in aqueous sodium chloride solution[J]. Materials Chemistry and Physics, 2022, 276: 125397.
    [23] Qijuan Dong, Wenchao Jia, Zequn Zhang, et al. Effects of Ni content on the corrosion behavior of Al0.5CoCrFeNix high entropy alloys in acid and alkaline media[J]. Materials and Corrosion, 2022, 73:1274-1285.
    [24] Sarangi C K, Sahu B P, Mishra B K, et al. Structure and corrosion property ????扵牬?孥??嵬?乣???畤浥慰牯??????畮獡据潯??????潬浬慩牮慥猠慮浩祣??敬琭?慵汮??啴湥摮攭牣獯瑰慰湥摲椠湡杬?敯晹映散捯瑡?潩普????匮眠瑊???乮慡?氠?潦渠?瑰桰敬?捥潤爠牅潬獥楣潴湲?潣晨??汩?獴畲批??????猬甠戵??漠?爱?攷中椱?样椴朮格?敲渾瑛爲漵灝礠?慳汵氠潋礠孍?崠???潮甠牓渠慈氬?潌晩?丠畃挠汓攮愠牍??慲瑯敳牴楲慵汣獴?????????????????????扡牶?or of FeCrNiCoMnx (x= 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5M H2SO4[J]. Corrosion Science, 2021, 190: 109694.
    [26] Cheng Zhang, Zhi-Wei Zhang, Lin Liu. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure[J]. Electrochimica Acta, 2016, 210:401- 406.
    [27] Wang W, Qi W, Xie L, et al. Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5SHigh-Entropy Alloy Coating Fabricated by Plasma Spraying.Materials. 2019, 12(5):694.
    [28] Hong Luo, Huaizhi Su, Chaofang Dong, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution[J]. Applied Surface Science, 2017, 400: 38-48.
    [29] Ye F, Jiao Z, Yan S, et al. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer[J]. Vacuum, 2020, 174: 109178.
    [30] Deng S, Lu H, Li D Y. Influence of UV light irradiation on the corrosion behavior of electrodeposited Ni and Cu nanocrystalline foils[J]. Scientific Reports, 2020, 10(1): 3049.
    [31] Wang Y, Jin J, Zhang M, et al. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5M H2SO4 solution[J]. Journal of Alloys and Compounds, 2021, 858: 157712.
    [32] A Pardo, M C Merino, A E Coy, et al. Corrosion behaviour of AISI 304 stainless steel with Cu coatings in H2SO4[J]. Applied Surface Science, 2007, 253:9164-9176.
    [33] Xinrui Zhang, Jinlong Zhao, Tong Xi, et al. Dissolution and repair of passive film on Cu-bearing 304L stainless steels immersed in H2SO4 solution[j]. Journal of Materials Science Technology, 2018, 34: 2149-21
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯力,王梦琪,赵燕春,李邱达. FeCrMnAlCux高熵合金在0.5 M H2SO4溶液中耐腐蚀性能的研究[J].稀有金属材料与工程,2024,53(1):85~94.[Feng Li, Wang Mengqi, Zhao Yanchun, Li Qiuda. Corrosion Resistance of FeCrMnAlCux High-Entropy Alloys in 0.5 M H2SO4 Solution[J]. Rare Metal Materials and Engineering,2024,53(1):85~94.]
DOI:10.12442/j. issn.1002-185X.20230571

复制
文章指标
  • 点击次数:443
  • 下载次数: 935
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-12
  • 最后修改日期:2023-10-26
  • 录用日期:2023-11-13
  • 在线发布日期: 2024-01-29
  • 出版日期: 2024-01-24