+高级检索
选区激光熔化制备W-25%Re合金组织和性能研究
作者:
作者单位:

1.钢铁研究总院有限公司;2.安泰科技股份有限公司

中图分类号:

TG146.411

基金项目:

国家重点研发计划(2022YFB3705400)


Research on Microstructure and Properties of W-25%Re Alloy Prepared by Selective Laser Melting
Author:
Affiliation:

1.Central Iron & Steel Research Institute;2.Advanced Technology & Materials Co., Ltd

Fund Project:

National Key R&D Program of China(2022YFB3705400)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以球形W-25Re(质量分数,%,下同)合金粉末为原料,采用选区激光熔化(Selective Laser Melting,SLM)技术制备W-25Re合金试样,研究工艺参数对W-25Re合金试样的相对密度、显微组织及显微维氏硬度的影响。利用分析天平、场发射扫描电镜、X射线衍射仪和显微硬度仪等分析测试方法表征SLM制备的W-25Re合金试样的相对密度、显微组织、相组成和显微维氏硬度等性能。结果表明:SLM制备W-25Re合金过程中无明显的球化、翘曲、变形、分层或不能成形现象,试样表面和侧面无明显孔洞和裂纹等缺陷,成形性良好。随着输入的体能量密度逐渐增大,W-25Re合金试样内部垂直面晶粒形态逐渐从等轴晶和柱状晶混合转变为粗大的柱状晶。W-25Re合金试样仅含有立方晶系W13Re7相,衍射峰2θ角向左偏移的变化主要是由残余应力造成的。激光功率和扫描速度对W-25Re合金试样相对密度的影响显著。当体能量密度为1050 J/mm3,即激光功率210 W,扫描速度200 mm/s时,可获得相对密度高达98.49%的W-25Re合金试样;此时,试样水平面和垂直面的显微硬度分别为525.9 HV0.2和520.6 HV0.2,与轧制态W-25Re合金硬度值接近。

    Abstract:

    The W-25Re alloy was prepared by selective laser melting (SLM) using spherical W-25Re (mass fraction, %, hereinafter) alloy powder as the raw material. The effects of process parameters on the relative density, microstructure and micro-Vickers hardness of W-25Re alloy were investigated. The relative density, microstructure, phase composition, and micro-Vickers hardness of W-25Re alloy were characterized by analytical balance, field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), microhardness tester. The results show that there are no obvious spheroidization, warping, deformation, delamination or non-forming phenomena during the preparation of W-25Re alloy by SLM. There are no obvious defects such as holes and cracks on the surface and side of the specimens, and W-25Re alloy formability is good. With the increase of Ev, the grain morphology in the vertical plane of W-25Re alloy specimens gradually changes from the mixture of equiaxed and columnar grains to coarse columnar grains. W-25Re alloy specimens only contain the cubic W13Re7 phase, and the change in the leftward shift of the diffraction peak 2θ angle is mainly caused by residual stress during the forming process. The influence of laser power and scanning speed on the relative densityof W-25Re alloy is significant. When Ev is 1050 J/mm3, that is, the laser power is 210 W and the scanning speed is 200 mm/s, the W-25Re alloy specimen with a relative density of up to 98.49% can be obtained. At this time, the microhardness of the specimen in the horizontal and the vertical plane is as high as 525.9 HV0.2 and 520.6 HV0.2, respectively, which is close to the hardness value of the rolled W-25Re alloy.

    参考文献
    [1] Ding Hongyu(丁红瑜), Yin Yanjun(尹衍军), Guan Renjie(关杰仁) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(06): 2237.
    [2] Devon Beck, Jacob Bickus, Ethan Klein, et al. ACS Applied Materials Interfaces[J], 2023, 15(29): 35400.
    [3] Peter Morcos, Alaa Elwany, Ibrahim Karaman, et al. Journal of Materials Science[J], 2022, (57): 9769.
    [4] Zhang Menghan(张梦晗), Jiang Guosheng(姜国圣), Wang Pengwei(王鹏为) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(05): 1645.
    [5] Zhang Bi, Li Yongtao, Bai Qian. Chinese Journal of Mechanical Engineering[J], 2017, 30(3): 515.
    [6] Wei Lei(魏 雷), Lin Xin(林 鑫), Wang Meng(王 猛), et al. Aeronautical Manufacturing Technology(航空制造技术)[J], 2017(13): 16.
    [7] Gu Dongdong, Shi Xinyu, Reinhart Poprawe, et al. Science[J], 2021, 932(6545): 1.
    [8] Zhao Cang, Shi Bo, Chen Shuailei, et al. Reviews of Modern Physics[J], 2022, 94(4): 045002-1.
    [9] Chai Ren, Ravi K. Enneti. JOM[J], 2021, 73: 3401.
    [11] Byron Blakey-Milner, Paul Gradl, Glen Snedden, et al. Materials Design[J], 2021, 209: 110008.
    [12] Shaik Himan Saheb, Vinay Kumar Durgam, A. Chandrashekhar. Third International Conference on Inventive Material Science Applications[C]. AIP Publishing, 2020: 020018.
    [13] Zhang Xin(张 新), Lin Xiaohui(林小辉), Gao Xuanqiao(高选乔), et al. Powder Metallurgy Industry[J], 2022, 32(3): 18.
    [14] Yang Guang, Xie Yilian, Zhao Shuo, et al. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers[J], 2022, 1(3): 100037.
    [15] Liu Jinge, Wen Peng. Materials Design[J], 2022, 215: 110505.
    [16] Mueller A. V., Dorow-Gerspach D., Balden M., et al. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion[J], 2022(566): 153760.
    [17] King W E, Anderson A T, Ferencz R M, et al. Applied Physics Reviews[J], 2015, 2(4): 44.
    [18] Xue Sa(薛 飒), Wang Qingxiang(王庆相), Liang Shujin(梁书锦), et al. Rare Metal Materials and Engineering[J], 2023: 52(05): 1943.
    [19] Jia Haolin, Sun Hua, Wang Hongze, et al. The International Journal of Advanced Manufacturing Technology[J], 2021(113): 2413.
    [20] Li Kailun, Chen Jinhan, Zhao Congcong, et al. Tungsten[J], 2021(3): 218.
    [21] Li Yiming(李一鸣), Ji Yunping(计云萍), Kang Xueliang(康学良), et al. Rare Metal Materials and Engineering[J], 2022, 51(09): 3510.
    [22] Pan Shuaihang, Yao Gongcheng, Cui Yinan, et al. Tungsten[J], 2023, 5: 1.
    [23] Alberico Talignani, Raiyan Seede, Austin Whitt, et al. Additive Manufacturing[J], 2022(58): 103009.
    [24] Brady G. Butler, James D. Paramore, Jonathan P. Ligda, et al. International Journal of Refractory Metals and Hard Materials[J], 2018, 75: 248.
    [25] Ren Xiqiang(任喜强), Li Yungang(李运刚), Qi Yanfei(齐艳飞) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(07): 2682.
    [26] Liu Zheng(刘 震), You Chang(尤 畅), Liu Shichang(刘世昌) et al. Foundry(铸造)[J], 2023, 72(07): 781.
    [27] Li Kailun, Ma Guoqiang, Xing Leilei, et al. Materials Letters[J], 2020, 263(15): 127212.
    [28] Luo Laima(罗来马), Xu Wangzhi(徐旺之). China Tungsten Industry[J], 2022, 37(3): 1.
    [29] Dou Meng(窦 猛), Lu Yun(卢 云), Wang Xuecai(王学才). Laser Optoelectronics Progress(激光与光电子学进展)[J], 2022, 59(01): 217.
    [30] Dou Meng(窦 猛). Forming Processes and Microstructures and Properties of W-Re Alloy by Selective Laser Melting(选择性激光熔化W-Re合金成形工艺与组织性能研究)[D]. Anhui: Anhui University of Technology, 2021.
    [31] Cayla C. Eckley, Ryan A. Kemnitz, Christopher P. Fassio et al. JOM[J], 2021, 73: 3439.
    [32] Takafumi Yamamoto, Masanori Hara, Yuji Hatano. International Journal of Refractory Metals and Hard Materials[J], 2021, 100, 105651.
    [33] Hao Zhibo(郝志博), Tian Tian(田甜), Li Xinggang(黎兴刚), et al. Rare Metal(稀有金属)[J], 2020, 44(5): 476.
    [34] Tan Chaolin, Zhou Kesong, Ma Wenyou, et al. Science and Technology of Advanced Materials[J], 2018, 19(1): 370.
    [35] Yao Chenguang(姚晨光), An Zhibin(安志斌), YangZhufang(杨竹芳). Machine Building Automation(机械制造与自动化)[J], 2019, 48(04): 134.
    [36] Hu Changlin(胡木林), Xie Changsheng(谢长生), Huang Kaijin(黄开金). Laser Technology(激光技术)[J], 2006, (03): 262.
    [37] Wu Fang(伍 方), Sun Zhonggang(孙中刚), Li Bangyi(李邦怿), et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2020, 49(10): 3490.
    [38] Wan Hongyuan(万宏远), Liu Zhuangzhuang(刘壮壮), Han Quanquan(韩泉泉), et al. Aeronautical Science Technology(航空科学技术)[J], 2022, 33(09): 26.
    [39] Wu Fang(伍 方). Research on Forming Technology of Pure Tunsten Material by Selective Laser Melting(选择性激光熔化纯钨材料的成形技术研究)[D]. Shanghai: Shanghai University, 2019.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张莹莹,王学兵,熊 宁,柳学全.选区激光熔化制备W-25%Re合金组织和性能研究[J].稀有金属材料与工程,2024,53(10):2882~2890.[Zhang Yingying, Wang Xuebing, Xiong Ning, Liu Xuequan. Research on Microstructure and Properties of W-25%Re Alloy Prepared by Selective Laser Melting[J]. Rare Metal Materials and Engineering,2024,53(10):2882~2890.]
DOI:10.12442/j. issn.1002-185X.20240088

复制
文章指标
  • 点击次数:159
  • 下载次数: 352
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-02-22
  • 最后修改日期:2024-06-04
  • 录用日期:2024-06-06
  • 在线发布日期: 2024-10-17
  • 出版日期: 2024-09-27