+高级检索
大型GH4738合金开坯工艺研究方法及设计依据
DOI:
作者:
作者单位:

北京科技大学 材料科学与工程学院

作者简介:

通讯作者:

中图分类号:

TG27

基金项目:

国家重大专项(项目号:2019-VI-0021-0137)


Research Methods and Design Basis for the Cogging Process of GH4738 Superalloy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文通过有限元模型结合二次开发的方法基于工艺串联性和组织遗传性探究了大尺寸GH4738合金在复杂连续变形的开坯工艺中坯料内部晶粒组织分布及演化情况,给出了一种工艺设计、结果预测的通用性方法。根据φ660mm级GH4738合金实际开坯工艺进行了有限元模拟计算,将模拟结果与实际坯料对应位置的晶粒度进行了对比,验证了所建立模型的可靠性及准确性。依托该模型,以典型的镦粗和拔长过程为例,分析并给出了工艺参数对坯料在多火次变形过程中的组织演变规律及工艺制定方法:在镦粗过程中,随着压下速度增大、变形温度降低、压下量减小,坯料内部动态再结晶程度下降;在拔长过程中,随着压下速度减小、拔长温度升高、进给量减小,坯料内部动态再结晶程度升高。此外,结合本文的具体分析,在镦粗过程中建议压下速度控制在5mm/s-12mm/s;第一次镦粗温度为1160℃;单火次压下量控制在25%-35%之间;而拔长过程相较于镦粗过程更为复杂,在综合考虑坯料内部晶粒细化、拔长过程中坯料表面温降、出现“凹心”现象等因素后建议:单火次拔长压下速度控制在60mm/s-90mm/s之间;第二次拔长温度选择1120℃-1130℃之间;单火次拔长进给量控制在200mm-350mm之间。

    Abstract:

    This article explores the distribution and evolution of the internal grain structure of large-sized GH4738 alloy during the complex continuous deformation blanking process, based on the process sequentiality and organizational heredity, by employing a finite element model combined with secondary development methods. It presents a general approach for process design and outcome prediction. This paper conducts finite element simulation calculations based on the actual billet preparation process of φ660mm grade GH4738 superalloy, comparing the simulation results with the grain size at corresponding positions of the actual billets to verify the reliability and accuracy of the established model. Utilizing this model, typical upsetting and cogging processes are analyzed, and the effects of process parameters on the microstructural evolution of the billet during multiple deformation passes are discussed, along with methods for process formulation. During the upsetting process, as the reduction speed increases, the deformation temperature decreases, and the reduction amount decreases, the degree of dynamic recrystallization within the billet diminishes. In the cogging process, as the reduction speed decreases, the cogging temperature increases, and the feed amount decreases, the degree of dynamic recrystallization within the billet increases. Furthermore, based on the specific analysis in this paper, it is recommended to control the reduction speed during the upsetting process between 5mm/s and 12mm/s; the initial upsetting temperature should be 1160°C; and the single-pass reduction amount should be controlled between 25% and 35%. The cogging process is more complex than the upsetting process. Taking into account factors such as grain refinement within the billet, surface temperature drop during the cogging process, and the occurrence of the "concave center" phenomenon, it is recommended to control the reduction speed between 60mm/s and 90mm/s; the second cogging temperature should be chosen between 1120°C and 1130°C; and the feed amount should be controlled between 200mm and 350mm.

    参考文献
    相似文献
    引证文献
引用本文

孙攀贺,张亨年,张少辉,李昕,江河,姚志浩,董建新.大型GH4738合金开坯工艺研究方法及设计依据[J].稀有金属材料与工程,,().[Sun Panhe, Zhang Hengnian, Zhang Shaohui, Li Xin, Jiang He, Yao Zhihao, Dong Jianxin. Research Methods and Design Basis for the Cogging Process of GH4738 Superalloy[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-06
  • 最后修改日期:2025-05-12
  • 录用日期:2025-05-21
  • 在线发布日期:
  • 出版日期: