+高级检索
基于机器学习的铝合金电弧增材薄壁构件成形质量预测及多目标优化
DOI:
作者:
作者单位:

西北工业大学

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省教育厅服务地方专项计划项目 24JC086


Machine Learning-Based Prediction of Forming Quality and Multi-Objective Optimization for Thin-Walled Aluminum Alloy Components in Arc Additive Manufacturing
Author:
Affiliation:

Fund Project:

Shaanxi Provincial Department of Education Local Service Special Project 24JC086

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电弧增材制造(WAAM)在航空航天领域具有重要应用价值,但其热输入不稳定性导致铝合金薄壁构件几何符合度差与内部缺陷多的问题突出。针对传统方法在多物理场耦合优化中的局限性,本研究提出数据驱动解决方案:通过构建工艺参数(电流、扫描速率、送丝速率)与成形质量(路径/层间壁厚一致性、孔隙率)的数据集,建立BP神经网络模型,并融合GA遗传算法优化原始模型,结合NSGA-II算法进行成形质量多目标寻优。结果表明:优化后的GABP模型显著提升了沿路径壁厚一致性和孔隙率的预测精度,但层间壁厚一致性预测优化效果有限。通过NSGA-II获得的50组Pareto解集提出四类优化策略,验证试验结果表明模型预测误差为8.89%,准确地实现了成形质量指标的协同优化。该方法为WAAM薄壁构件成形质量控制提供了智能化决策支持。

    Abstract:

    Wire Arc Additive Manufacturing (WAAM) holds significant application value in the aerospace field, but the instability of heat input leads to prominent issues such as poor geometric conformity and numerous internal defects in aluminum alloy thin-walled components. To address the limitations of traditional methods in multi-physics coupling optimization, this study proposes a data-driven solution: by constructing a dataset of process parameters (current, scanning speed, wire feed rate) and forming quality (path/interlayer wall thickness consistency, porosity), a BP neural network model is established and optimized using the GA genetic algorithm, combined with the NSGA-II algorithm for multi-objective optimization. The results show that the optimized GABP model significantly improves the prediction accuracy of path wall thickness consistency and porosity, but the optimization effect on interlayer wall thickness consistency prediction is limited. Four types of optimization strategies are proposed based on the 50 sets of Pareto solutions obtained through NSGA-II, and validation tests indicate a model prediction error of 8.89%, accurately achieving the collaborative optimization of forming quality indicators. This method provides intelligent decision-making support for the forming quality control of WAAM thin-walled components.

    参考文献
    相似文献
    引证文献
引用本文

彭逸琦,高悦芳,华谭智,张思睿,赵宇凡,林鑫.基于机器学习的铝合金电弧增材薄壁构件成形质量预测及多目标优化[J].稀有金属材料与工程,,().[Pengyiqi, Gaoyuefang, Huatanzhi, Zhangsirui, Zhaoyufan, linxin. Machine Learning-Based Prediction of Forming Quality and Multi-Objective Optimization for Thin-Walled Aluminum Alloy Components in Arc Additive Manufacturing[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-21
  • 最后修改日期:2025-05-27
  • 录用日期:2025-06-11
  • 在线发布日期:
  • 出版日期: