+Advanced Search
Microstructure and mechanical property of electron beam welding joint of GH4169 alloy with different crystal orientations fabricated by laser additive manufacturing
Affiliation:

National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In this paper, electron beam welding of laser additive manufacturing GH4169 alloy with different crystal orientation difference (0°, 45°, and 90°) were conducted, and the microstructure and mechanical properties of the weld metal under different crystal orientation of the parent metals on both sides were analyzed. The results show that the dendrites of weld structure have obvious preferential orientation, and the weld structure continuously grows based on the base metal crystal. With the increase of the crystal orientation difference (0°, 45°, and 90°), the content of the large-angle grain boundary in the central area of the weld increases first and then decreases; for the fusion line area of the weld, the content of the large-angle grain boundary increases first and then decreases from 0°, 45° and 90°. The tensile test results show that the tensile strength of the welded joint decreases as the crystal orientation difference increases, which are 721.8Mpa, 720.7Mpa, and 702Mpa respectively, and they are all lower than the base metal which has a tensile strength of 737.2MPa. The hardness values of the weld areas with different orientation difference (0°, 45° and 90°) fluctuated slightly at 265 HV. The plastic deformation of the weld metal is affected by the crystal orientation of each region of the weld. It has the same distribution trend as the large-angle grain boundary content. The more soft-oriented crystal content in the structure, the greater the amount of metal structure deformation. The greater the degree of bending, the stronger the plasticity of the welded joint.

    Reference
    [1] Liu Fencheng(刘奋成), Lin Xin(林鑫), Zhao Weiwei(赵卫卫) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2010, 39(09) : 1519- 1524.
    [2] Zhao Xinbao(赵新宝), Gu Yuefeng(谷月峰), Lu Jintao(鲁金涛)et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2015, 44(03): 768- 774.
    [3] Lin Xin(林鑫), Huang Weidong(黄卫东). Materials China(中国材料进展)[J], 2015, 34(09): 684- 688+ 658.
    [4] Huang Weidong(黄卫东). Laser solid forming(激光立体成形)[M]. Xian: Northwestern Polytechnical University Press, 2007: 1- 15.
    [5] Li Shengnan(李胜男), Xiong huaping(熊华平), Chen Bingqing(陈冰清) et al. Transactions of the China Welding Institution(焊接学报)[J], 2016, 37(02): 1- 4+ 28+ 129.
    [6] Tan Shujie(谭树杰), Li Duosheng(李多生), Liu Hongbing(刘红兵) et al. Transactions of Nonferrous Metals Society of China(中国有色金属学报)[J], 2017, 27(08): 1572- 1579.
    [7] TanJilun(陈济轮), Yang Jie(杨洁), Yu Haijing(于海静). Aerospace Manufacturing Technology(航天制造技术)[J], 2014(04): 1- 4+ 10.
    [8] Tang Huiping(汤慧萍), Wang Jian(王建), Lu Shenglu(逯圣路) et al. Materials China(中国材料进展)[J], 2015, 34(3)225- 235
    [9] Gao Peng(高鹏), Zhang Kaifeng(张凯锋), Zhang Binggang(张秉刚) et al. Transactions of Nonferrous Metals Society of China(中国有色金属学报)[J], 2011, 21(S2): 315- 322.
    [10] Gao Shuangsheng(高双胜), Xiao Hanlin(肖翰林), Yang Shuo(杨烁) et al. Hot Working Technology(热加工工艺)[J], 2016, 45(11): 242- 244.
    [11] Kwon S I , Bae S H, Do J H et al. A. Physical Metallurgy and Materials Science[J], 2016, 47A(2): 777- 787.
    [12] Me Yunpeng, Liu Yongchang, Liu Chenxi et al. Materials & design[J], 2016, 89(1): 964- 977.
    [13] Liu fencheng(刘奋成), Lin Xin(林鑫), Yu Xiaobin(余小斌) et al. Acta Metallurgica Sinica (金属学报)[J], 2014, 50(04): 463- 470.
    [14] Yang Chubin, Liu Lin, Zhao Xinbao et al. Progress in Natural Science: Materials International[J], 2012, 22(05): 407- 413.
    [15] Zhang Jun(张军), Huang Taiwen(黄太文), Liu Lin(刘林) et al. Acta Metallurgica Sinica (金属学报)[J], 2015, 51(10): 1163- 1178.
    [16] Yang Sen(杨森), Hang Weidong(黄卫东), Liu Wenjin(刘文今) et al. Acta Metallurgica Sinica (金属学报)[J], 2001(06): 571- 574.
    [17] Xi Mingzhe(席明哲), Zhou Wei(周玮), Shang Junying(尚俊英) et al. Acta Metallurgica Sinica (金属学报)[J], 2017, 53(02): 239- 247.
    [18] Bian Hongyou(卞宏友), Zhao Xiangpeng(赵翔鹏), Qu Shen(曲伸) et al. Chinese Journal of Lasers (中国激光)[J], 2016, 43(01): 93- 99.
    [19] Guo Zhanying(郭占英), Liu Yongjun(刘拥军), Fang Haipeng(方海鹏). Materials Science and Technology (材料科学与工艺)[J], 2019(12): 1- 7.
    [20] Jia Shujun(贾书君), Liu Qingyou(刘清友), Li Ba(李拔). HeatTreatment of Metals(金属热处理)[J], 2016, 41(4): 197- 200.
    [21] Ma Cong(马聪), Liu Feng(刘峰), Lian Jingbao(连景宝), et al. Heat Treatment of Metals(金属热处理)[J], 2015, 40(10): 49- 53.
    [22] Nie Wenjin(聂文金), Shang Chengjia(尚成嘉), You Yang(由洋) et al. Acta Metallurgica Sinica (金属学报)[J], 2012, 48(07): 797- 806.
    [23] Sato Yutaka S., Mitsunori Urata, Hiroyuki Kokawa et al. Materials Science & Engineering A[J], 2003, 354(10): 361- 487.
    [24] Liu Zhien(刘智恩).Materials Science[M]. Xi''an: Northwestern Polytechnical University Press, 2013: 218- 240.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

[Liu Fencheng, Chen Yue, Xv Yang, Li Chunyu, Liu Fenggang, Li Qiuge. Microstructure and mechanical property of electron beam welding joint of GH4169 alloy with different crystal orientations fabricated by laser additive manufacturing[J]. Rare Metal Materials and Engineering,2021,50(4):1283~1295.]
DOI:10.12442/j. issn.1002-185X.20200174

Copy
Article Metrics
  • Abstract:930
  • PDF: 1306
  • HTML: 179
  • Cited by: 0
History
  • Received:March 16,2020
  • Revised:May 13,2020
  • Adopted:May 27,2020
  • Online: May 08,2021